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1 Introduction

Syntax, in its most superficial aspect, is the study of patterns in linear sequences
of events: sounds in a utterance, words on a page, etc. Patterns of this sort do
not need to be very complicated before the combinatorial possibilities of their
interactions become overwhelming. Formal Language Theory, the mathematical
study of of patterns such as these, provides a means of abstracting away from
the complexities of these interactions in order to reason clearly about their
consequences. Formalization of assertions about the structure of utterances
helps to make the theory that incorporates those assertions more explicit in
that it reduces ambiguity, exposes unmotivated assumptions and supports a
well-defined method of inference by which the consequences of the assertions can
be explored. In Pullum, Rogers and Scholz (in preparation) these dimensions
of explicitness are referred to as univocality, overtness and projectability.

But beyond the potential benefits of formalization in explicating a theory
of syntax, the ways of reasoning about patterns that are employed in Formal
Language Theory, because of the way the abstraction they employ tames combi-
natorial complexity, provide a means of thinking clearly about these components
of a theory, even if, in the end, the theory is not to be fully formalized.

This course is an introduction to FLT for aspiring syntacticians. Its goal is
to introduce these ways of reasoning in a way that directly serves the kinds of
analysis one encounters in studying the syntax of human languages. It differs
from traditional approaches to the material in that it does not take compu-
tational processes (formal grammars and automata) to be primary. Rather it
focuses on mathematically well-defined descriptive mechanisms (formal logics)
and brings the computational processes into play as a way of reasoning about
the sets of structures definable by these means.

The study of definability by logical means is the domain of Model Theory
and over the last thirty years or so Finite Model Theory, the model theory of
finite structures, has proven to be a strikingly effective tool for reasoning about
computational processes (an area known as Descriptive Complexity). We, in a
sense, take the opposite perspective, starting with descriptions of sets of finite
structures and employing the results of Finite Model Theory and Descriptive
Complexity Theory to characterize the abstract properties of those sets.

We should be clear about the objects we are studying. While Syntax, as a
branch of Linguistics, is a study of human languages, we will not be studying
those languages themselves but, rather, modeling the physically realized form
of utterances as sequences of symbols: strings over some finite alphabet. Thus
we will be modeling fragments of languages as sets of strings. The idea is that
the regularities of syntax will show up as patterns in the sets of strings and
v.v., at least for the fragment that the set represents. But it is important to be
clear about the distinction between the ultimate object of study—the language
itself—and the objects we use to model them—the sets of strings. From this
perspective, the patterns in the sets of strings serve as a means of representing
the regularities that the theory of syntax is based upon. Beyond that, we are
not interested here in any particular theory of syntax or in particular sets of
strings. Rather, our focus is the metatheory of this modeling process. We are
interested in what we can understand about the sets we define by examining the
methods we use to define them as mathematical processes in their own right.

In order to preserve the distinction between the sets of strings we are working
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with and the human languages they model, we will refer to these as stringsets
rather than the more usual formal languages. This is convenient, as well,
since the classes of descriptions that we will be studying are, themselves, formal
languages. We will reserve the term language, in the sequel, for these logical
languages.

We will start out with exceedingly simple, arguably nearly minimal, logi-
cal languages, languages that provide descriptive means so limited that no one
would seriously advocate them as means for describing the syntax of human lan-
guages. But by starting at this nearly trivial level we will be able to introduce
the tools and techniques of Formal Language Theory (and Finite Model Theory)
in very simple forms. As we extend the descriptive power of our languages, the
complexity of the techniques will increase but, by increasing the power incre-
mentally we will be able to introduce this increased complexity incrementally
as well.

One of the conclusions we will be able to draw from this approach is that
patterns in strings do not have to get very complicated before one needs to
introduce structure beyond the inherent structure of the strings in order to
account for them. This is not at all unwelcome from a linguistic perspective,
since Syntax is generally interested in analyzing strings in terms of such inferred
structure.

The need for additional structure introduces a second theme of this course.
Initially, working directly with strings, we will increase our descriptive power by
varying the logical mechanisms we employ. But we will then move to increasing
that power by increasing the complexity of the structures we reason about,
employing the same range of logical mechanisms over classes of progressively
more complex structures. One of the theorems we will encounter will show that,
while the complexity of the definable sets of these more complicated structures
will vary as we vary the logical mechanisms in much the same way that the
complexity varies when defining sets of strings, the complexity of the patterns
that show up in the stringsets these structures yield will remain constant. Once
we introduce structure beyond the inherent structure of the strings, variations
in logical mechanisms are not reflected in the stringsets, rather they are of
“theory internal” significance, showing up as variations in the complexity of
the regularities exhibited by the sets of structures we employ in analyzing the
strings. Variations in the complexity of the stringsets themselves will be a
consequence of variations in the complexity of the structures we use to analyze
them.

This reader is not intended to stand alone, being little more than an enu-
meration of definitions, examples and theorems more or less in the order we
will encounter them. Motivation, explanation and additional examples will be
provided in the lectures.
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1.1 Methodology

• Capture patterns in strings with logical formulae

– Define in terms of relationships within string

• Define stringsets as set of models of those formulae

– “Grammars” are sets of axioms

• Model Theory

– Fundamental questions have to do with what we can determine about
the nature of a stringset based on the logical machinery needed to
define it.

• Descriptive Complexity

– Characterizations of classes of definable sets in terms of algorithmic
processes and v.v.

– Structure of the definable sets and structure of class of definable sets

– Limits of definability

2 Basic Concepts

2.1 Strings as sequences (An Inductive Definition)

An Alphabet is any non-empty finite set of symbols:

e.g., Σ = {a, b, c}.

Definition 1 (Σ∗: Strings over an alphabet Σ)
(An Inductive Definition.)
Given any alphabet Σ the set of all Strings over Σ is the smallest set Σ∗ such
that:

• The empty sequence is a string over Σ: ε ∈ Σ∗.

• If v is a string over Σ, σ is a symbol in Σ and w = vσ, then w is a string
over Σ: v ∈ Σ∗, σ ∈ Σ and w = vσ implies w ∈ Σ∗.

2.2 A Recursive Definition

Definition 2 (Length of a string) (A Recursive Definition.)
For all w ∈ Σ∗:

|w| =

{
0 if w = ε,
|v| + 1 if w = vσ.
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2.3 Proof by Structural Induction

Lemma 3 For any alphabet Σ and all w ∈ Σ∗, the length of Σ is finite:

w ∈ Σ∗ ⇒ |w| ∈ N.

Proof(by Structural Induction) By Definition 1, either w = ε or w = v · σ
for some simpler string v ∈ Σ∗.

(Basis:) Suppose w = ε. Then, by Definition 2, |w| = 0 ∈ N.

(Induction:) Suppose w = vσ and that all strings in Σ∗ that are strictly sim-
pler (in the sense of Definition 1) than w have finite length. Then |v| ∈ N (by
hypothesis) and |w| = |v| + 1 (by Definition 2) ∈ N. ⊣⊣⊣

Definition 4 (Concatenation of strings) For all w, v ∈ Σ∗:

u · w =

{
u if w = ε,
(u · v)σ if w = vσ.

Lemma 5 (Identity for concatenation) The empty string is both a left and
right identity element for concatenation:

w · ε = w = ε · w.

Proof Exercise. ⊣⊣⊣

Lemma 6 Concatenation of strings is associative

(u · v) · w = u · (v · w).

Proof Exercise. ⊣⊣⊣

2.4 Concatenation and iteration of stringsets

Definition 7

L1 · L2
def
= {w · v | w ∈ L1, v ∈ L2}

Definition 8 (Iteration of a Stringset) If L is a stringset and i ∈ N then:

Li =

{
{ε} if i = 0,
Lj · L if i = j + 1.

2.5 Kleene and positive closure

Definition 9 (Kleene Closure) If L is a stringset its Kleene closure (or
iteration closure) L∗ is:

L∗ =
⋃

i≥0

[Li].

Definition 10 L+ is the positive closure of L:

L+ =
⋃

i≥1

[Li].

(Exercise) Show that, in general, L+ 6= L∗ − L0.
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2.6 Finite stringsets

Definition 11 (Fin) The class of Finite Stringsets (Fin) over an alphabet Σ
is the smallest set such that:

• ∅ is a finite stringset (i.e., ∅ ∈ Fin)

• {ε} is a finite stringset ({ε} ∈ Fin)

• If σ ∈ Σ then {σ} is a finite stringset (σ ∈ Σ ⇒ {σ} ∈ Fin)

• If L1 and L2 are finite stringsets (L1, L2 ∈ Fin) then:

– L1 · L2 is a finite stringset (L1 · L2 ∈ Fin) and

– L1 ∪ L2 is a finite stringset (L1 ∪ L2 ∈ Fin)

(Exercise) Prove that Fin is actually the set of all finite stringsets, i.e., if
card(L) = n ∈ N then L ∈ Fin and v.v. (Start by proving that if w ∈ Σ∗ then
{w} ∈ Fin.)

2.7 Relational structures

Definition 12 (Relational Signature) A relational signature R is a fi-
nite set of predicate symbols divided into a sequence of disjoint subsets R1 ∪
R2 ∪ · · · . If ρ ∈ Rn then the arity of ρ is n.

Definition 13 (n-ary relation) An n-ary relation over sets S1, S2, . . . , Sn

is a set of n-tuples:

R ⊆ S1 × S2 × · · · × Sn = {〈x1, x2, . . . , xn〉 | xi ∈ Si}.

Sn def
=

n︷ ︸︸ ︷
S × S × · · · × S

Definition 14 (Relational Model)
A relational model over a relational signature R is a tuple A = 〈A, ρA1 , ρ

A
2 , . . .〉,

where A is the domain of A and there is a ρAi for each ρi ∈ R and, if ρi ∈ Rn

then ρAi ⊆ An.

2.8 Strings as relational structures

Definition 15 (String Models) A (⊳) String Model (a Successor String
Model) over an alphabet Σ is a tuple

W = 〈W, ⊳, Pσ〉σ∈Σ

in which the domain W is a finite set which is totally ordered by the transitive
closure of ⊳.
A (⊳+) String Model (a Precedence String Model) over an alphabet Σ is
a tuple

W = 〈W, ⊳, ⊳+, Pσ〉σ∈Σ

in which the domain W is a finite set which is totally ordered by ⊳+ and in
which ⊳+ is the transitive closure of ⊳.

So the signature of a (⊳+) string model is
{Pσ | σ ∈ Σ} (= R1) ∪ {⊳, ⊳+} (= R2).
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2.9 Example

Alice

⊳ ⊳ ⊳0 1 2 3 4

people Alice loves love

⊳

people Alice loves love Alice = 〈W, ⊳, Ppeople, PAlice, Ploves, Plove〉
W = {0, 1, 2, 3, 4}
⊳ = {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 4〉}

Ppeople = {0}
PAlice = {1, 4}
Ploves = {2}
Plove = {3}

2.10 Isomorphism

Definition 16 (Isomorphism) Two models A and B are isomorphic, A ∼= B
(with respect to a relational signature R), if there is a one-to-one and onto map
(a bijection) associating points in the domain of one model with points in the
domain of the other that respects the relations of the signature in the sense that
a tuple of points are related by the interpretation of ρ ∈ R in one iff their images
under the map are related by the interpretation of ρ in the other.

Models that are isomorphic with respect to the signature R cannot be distin-
guished by any property that depends only on the relationships denoted by the
predicates in R.

2.11 Canonical string models

Observation 17 All string models are isomorphic to some string model in
which W is an initial segment of N (i.e., W = {0, 1, . . . , n− 1}) and ⊳ and
⊳+ are the natural successor and less-than relations on N. We will take this to
be the canonical model of the string.

Observation 18 If W is a string model over an alphabet Σ and Σ ⊆ Γ, then W
can be extended to a string model over Γ by adjoining empty ( ∅) interpretations
of the symbols in Γ − Σ.

2.12 The empty string

Observation 19 The empty string, as a relational model, has an empty domain
(W = ∅) and, consequently, the interpretations of the predicates of its signature
are all empty as well: W = 〈∅, ∅, . . . , ∅〉. While there is a distinct model for
the empty string for each distinct alphabet, these differ only in the number and
names of the relations they contain. Since the interpretation of all predicates is
determined, in the spirit of Observation 18 we can take the canonical model of
the empty string to be simply 〈∅〉, extending it for whatever signature is required.



ESSLLI’07—Formal Description of Syntax 8

2.13

Definition 20 (Concatenation of String Models) Given two strings

w = 〈W, ⊳w, ⊳+w
, Pw

σ 〉σ∈Σ and v = 〈V, ⊳v, ⊳+v
, P v

σ 〉σ∈Σ

w · v
def
=






w if v = ε,
v if w = ε,
〈 W ⊎ V, ⊳w ⊎ ⊳v ∪ {〈maxw,minv〉},

⊳+w
⊎ ⊳+v

∪ (W × V ), Pw
σ ⊎ P v

σ 〉σ∈Σ

otherwise.

where maxw is the maximum point in W and minv is the minimum point in V .

2.14 Formal Problems

Definition 21 (Formal Problem, Decision Problem) A formal problem
is a precise definition of two classes of mathematical objects, the class of in-
stances of the problem and the class of solutions, along with a function map-
ping each instance into (the set of) its solution(s). A problem is a decision
problem iff its class of solutions is just {true, false}.

2.15 Some formal problems

Definition 22 ((Fixed) Recognition Problem) An instance of the (Fixed)
Recognition Problem, for a specific stringset, is a string over the appropriate
alphabet. The solution is ‘true’ if the string is in the set, ‘false’ otherwise.

Definition 23 (Universal Recognition Problem) An instance of the Uni-
versal Recognition Problem, for a class of formal descriptions of stringsets,
is a pair consisting of a description in the class and a string over the appro-
priate alphabet. The solution is ‘true’ if the string is in the set defined by the
description, ‘false’ otherwise.

Definition 24 (Parsing Problem) An instance of the Parsing Problem
for a class of mathematical structures encoding the syntactic structure of strings
is a string over the appropriate alphabet. The solution is either a structure in
the class that encodes the syntax of that string or ‘fail’ if there is none.

Variations on the parsing problem include requiring the solution to be the set of
all structures that encode the structure of the given string, as well as Universal
forms in which the instance is a description in a class of formal descriptions of
sets of structures along with a string.

Definition 25 (Emptiness Problem) An instance of the Emptiness Prob-
lem for a class of formal descriptions of stringsets is a description in that class.
The solution is ‘true’ if there are no strings that satisfy the description, ‘false’
otherwise.

Definition 26 (Finiteness Problem) An instance of the Finiteness Prob-
lem for a class of formal descriptions of stringsets is a description in that class.
The solution is ‘true’ if the set of strings that satisfy the the description is finite,
‘false’ otherwise.
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Definition 27 (Universality Problem) An instance of the Universality Prob-
lem for a class of formal descriptions of stringsets is a description in that class.
The solution is ‘true’ if every string over the appropriate alphabet satisfies the
description, ‘false’ otherwise.

2.16 Algorithms

Definition 28 (Algorithm) An algorithm for a problem is a definite pro-
cedure, one that is defined in terms of a sequence of unambiguous mathemati-
cally precise steps, which, starting with any instance of the problem, is guaran-
teed to produce a (correct) solution for that instance after finitely many steps.
If the procedure, given any instance, always produces some solution after finitely
many steps we say that it is terminating. If any solution that the procedure
arrives at is, in fact, one of the solutions of the instance it started with we say
that it is partially correct. If it is both partially correct and terminating we
say that it is totally correct. Properly, algorithms are required to be totally
correct.

2.17 Rec

We say that a problem is computable iff there is an algorithm that solves it.
Computable decision problems are often said to be decidable. The stringsets
for which the (fixed) recognition problem is computable are said to be recur-
sive. The class of all recursive stringsets is denoted Rec.

Definition 29 (Rec) A stringset is in the class Rec iff its (fixed) recognition
problem is computable.

3 Propositional Languages for Strings—Strictly

Local Stringsets

3.1 k-factors

Definition 30 (k-factors) Given a string w and a length k, the set of k-factors
of w is:

Fk(w)
def
=

{
{y | w = x · y · z, x, y, z ∈ Σ∗, |y| = k} if |w| > k,
{w} otherwise.

The set of k-factors of a stringset L is the set of k-factors of the strings that it
contains:

Fk(L)
def
=

⋃

w∈L

[Fk(w)].

Definition 31 (Augmented string) Suppose {⋊,⋉} 6∈ Σ. An augmented
string over Σ is a string w ∈ Σ∗ with marked ends: ⋊w⋉
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3.2 Strictly Local Descriptions

Definition 32 (Strictly k-Local Description) A strictly k-local descrip-
tion is an arbitrary set of k-factors drawn from the alphabet Σ, possibly starting
with ‘⋊’ and/or ending with ‘⋉’:

G ⊆ Fk({⋊} · Σ∗ · {⋉})

A string model w satisfies such a description iff the augmented string ⋊ · w · ⋉

includes only k-factors given in the description:

w |= G
def
⇐⇒ Fk(⋊ · w · ⋉) ⊆ G

L(G) is the stringset defined by G, the set of finite strings which satisfy it:

L(G)
def
= {w | w |= G, w finite}.

A stringset is Strictly k-Local ( SLk) iff it can be defined by a Strictly k-Local
description. It is Strictly Local (SL) iff it is SLk for some k.

3.3 Capabilities of Strictly 2-Local Descriptions

• Valency of verbs

– Exclude “likes ⋉”, “slept Alice”, etc.

• (Local) number agreement

– Exclude “Alice like”, “dogs likes”, etc.

• Presence of an (initial) subject

– Exclude “⋊ like”, “⋊ slept”, etc.

• (Local) selectional restrictions

– Exclude “biscuit likes”, “biscuit slept”, etc.

3.4 Canonical SL stringsets

Iterated sequences of k distinct symbols are SLk.
{(ab)i | 0 ≤ i} ∈ SL2, as witnessed by

{⋊⋉, ⋊a, ab, ba, b⋉}

{(a1a2 · · · ak)i | 0 ≤ i} ∈ SLk (ai = aj iff i = j), as witnessed by

{ ⋊⋉, ⋊a1 · · ·ak−1, a1 · · · ak, a2 · · · aka1, . . . ,
aiai+1 · · · aka1 · · · ai−1, . . .
a2 · · · ak⋉

}

(Exercise) What stringsets would the class SL1 include?
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3.5 SL2 example

Example 33

D33 = { ⋊Alice, ⋊people,
Alice sleeps, people sleep, Alice loves, people love,
loveAlice, love people, lovesAlice, loves people,
sleep⋉, sleeps⋉, Alice⋉, people⋉ }

∈ L(D33) 6∈ L(D33)
Alice sleeps people sleep Alice
people sleep Alice love people
Alice loves people . . .

But also licenses just Alice and people.

3.6 SL3 example

Example 34

D34 = { ⋊Alice sleeps, ⋊Alice loves,
⋊people sleep, ⋊people love,
Alice lovesAlice, Alice loves people,
people loveAlice, people lovepeople,
Alice sleeps⋉, people sleep⋉,
lovesAlice⋉, loves people ⋉,
loveAlice⋉, lovepeople ⋉ }

Claim 35 If w ∈ L(D34) then w includes a verb.

But people love Alice sleeps ∈ L(D34).

3.7 SL4 example

Example 36

D36 = { ⋊Alicesleeps, Alice sleeps⋉,
⋊Alice lovesAlice, Alice lovesAlice⋉,
⋊Alice loves people, Alice lovespeople⋉,
⋊people sleep, people sleep ⋉,
⋊people loveAlice, people loveAlice⋉,
⋊people lovepeople, people lovepeople ⋉ }

Claim 37 L(D36) is finite.

3.8 Finite stringsets and SL

Lemma 38 (Fin ( SL) Every finite set of strings is definable with an SLl+1

description, where l is the maximum length of the strings in the set. Conversely,
there are SL2 stringsets which are not finite.

Claim 39 L(D34) is not finite.

{Alice (loves Alice)i | i ∈ N} ⊆ L(D34)
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3.9 Cognitive interpretation of SL

• Any cognitive mechanism that can distinguish member strings from non-
members of an SLk stringset must be sensitive, at least, to the length k
blocks of events that occur in the presentation of the string.

• If the strings are presented as sequences of events in time, then this corre-
sponds to being sensitive, at each point in the string, to the immediately
prior sequence of k − 1 events.

• Any cognitive mechanism that is sensitive only to the length k blocks of
events in the presentation of a string will be able to recognize only SLk

stringsets.

3.10 Abstract recognition algorithms

Definition 40 (Automata) An automaton is a formal presentation of an
abstract algorithm for the (Fixed) Recognition Problem for a specific stringset.
A class of automata is a collection of automata representing the same al-
gorithm over a range of stringsets determined by parameters of the algorithm.
The Universal Recognition Problem for a class of automata takes the values of
those parameters and a string as input and asks if the string is accepted by the
corresponding automaton.

3.11 Automata for SL

a b a b a b a b a babababa

k k

b

· · ·

· · ·

· · ·

· · ·

· · ·

k

a · · · b· · ·

b

a

a

∈

a

b

D :

S Q

R

Definition 41 (k-local Scanners) A k-local Scanner M is a pair: 〈Σ, T 〉,
where T ⊆ Fk(⋊ · Σ∗ · ⋉).
A computation of a k-local scanner is a sequence of one or more k-factors:
〈x1, x2, . . . , xm〉 where

• each xi ∈ T ,

• x1 = ⋊σ1 · · ·σk−1,

• xm = σn−(k−2) · · ·σn⋉ and

• for all i < m, xi = σiσi+1 · · ·σi+(k−1) and xi+1 = σi+1 · · ·σi+(k−1)σi+k.
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A string w is accepted by a k-local scanner (w ∈ L(M)) iff the sequence of
k-factors occurring in ⋊w⋉, in order, is a computation of M.
A stringset L is recognized by a k-local scanner M iff L = L(M).

Lemma 42 A stringset L is SLk iff there is a k-local scanner ML which rec-
ognizes it.

Proof L ∈ SLk iff L = (DL) for some strictly k-local description DL ⊆
Fk(⋊ · Σ∗ · ⋉).
Let ML = 〈Σ,DL〉.
Then w ∈ L(ML) iff Fk(⋊w⋉) ⊆ DL iff w ∈ L(DL). ⊣⊣⊣

Theorem 43 (SL ⊆ Rec.) Both the fixed and universal recognition problems
for SL are decidable.

Lemma 42 establishes decidability of the fixed recognition problem. The fact
that the universal recognition problem is decidable follows from the fact that
the construction of the equivalent strictly k-local scanner from a SLk description
is effective (i.e., it is an algorithmic process).

3.12 Myhill graphs

Definition 44 (Myhill Graphs) A Myhill Graph over an alphabet Σ is a
directed graph G = 〈V,E〉, where:

V = Σ ∪ {⋊,⋉} The vertices of the graph
E ⊆ V × V The edges of the graph

For consistency with the graphs we will introduce later, we will mark the vertex
⋊ as the start state with an “edge from nowhere” and will mark the vertex ⋉

as the final state with a double circle.

3.13 The Myhill graph corresponding to D33

⋉⋊

sleep

loves

Alice

love

people

sleeps

Lemma 45 A string w is accepted by a scanner for an SL2 description D iff
the augmented string ⋊w⋉ is the sequence of vertices visited along some path
from ⋊ to ⋉ in the Myhill graph corresponding to D.
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Proof Each edge 〈v1, v2〉 corresponds to the 2-factor v1v2. There is a path
〈〈⋊, v1〉, 〈v1, v2〉, . . . , 〈vn,⋉〉〉 from ⋊ to ⋉ in the Myhill graph corresponding to
D iff 〈⋊v1, v1v2, . . . , vn⋉〉 is a computation of the scanner for D, which is to say
iff v1v2 · · · vn ∈ L(D). ⊣⊣⊣

3.14 Generalized Myhill Graphs

Definition 46 (Generalized Myhill Graphs) A k-Myhill graph over an
alphabet Σ is a directed, edge-labeled graph with a set of distinguished vertices
G = 〈V,E, ℓ, F 〉 where:

V = {w ∈ Σ∗ | |w| < k}
E ⊆ V × V
ℓ : E → Σ
F ⊆ V.

and

ℓ(〈v1, v2〉) = σ ⇒

{
v2 = v1σ, |v1| < (k − 1)
v1 = σ′w and v2 = wσ, otherwise.

An SLk description D corresponds to the k-Myhill graph over the same alphabet
in which:

〈v1, v2〉 ∈ ED, ℓ(〈v1, v2〉) = σ
def
⇐⇒

{
v1σ ∈ D |v1| = k − 1, or
⋊v1σw ∈ D for some w ∈ Σ∗

v ∈ FD
def
⇐⇒ v⋉ ∈ D.

A k-Myhill graph G corresponds to the k-local description:

DG
def
= { v1σ if 〈v1, v2〉 ∈ E, ℓ(〈v1, v2〉) = σ and |v1| = k − 1,

v1⋉ if v1 ∈ F and |v1| = k − 1,
⋊v1σ if 〈v1, v2〉 ∈ E, ℓ(〈v1, v2〉) = σ, |v1| = k − 2,

and there is a path from ‘ε’ to v1,
⋊v1⋉ if v1 ∈ F, |v1| < k − 1

and there is a path from ‘ε’ to v1 }
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3.15 The 3-Myhill graph corresponding to D34.

Alice

loves

ε

love

Alice

sleep

people

lovepeople

sleep

lovesAlice

love

people sleep

loves
loves

sleepsAlice

love

sleeps

love Alice

sleeps

sleeps

loves people

people

Alice

loves Alice

sleep

people

love people

Alice

people

Lemma 47 A string w is accepted by a scanner for an SLk description D iff
w is the sequence of edge labels along some path from ε to a vertex in F in the
k-Myhill graph corresponding to D.

Theorem 48 (Emptiness is decidable for SL stringsets) There is an al-

gorithm that, given any SL description D, decides L(D)
?
= ∅

Proof Given any SLk description D, construct the corresponding k-Myhill
graph. Since w ∈ L(D) iff there is a path labeled w through the graph from ‘ε’
to a vertex in F , L(D) = ∅ iff there is no path from ‘ε’ to any vertex in F . The
(non-)existence of such a path can be determined by breadth-first search. ⊣⊣⊣

Theorem 49 (Finiteness is decidable for SL stringsets) There is an al-
gorithm that, given any SL description, decides if L(D) is finite.

(Proof exercise.)

Theorem 50 (Universality is decidable for SL stringsets) There is an al-

gorithm that, given any SL description D, decides L(D)
?
= Σ∗

(Proof exercise. Think in terms of the description itself rather than the Myhill
graph of its scanner.)

3.16 Abstract generation algorithms

Definition 51 (Formal Grammar) A (formal) grammar is a formal pre-
sentation of an abstract algorithm for constructing strings in a specific stringset.
In this context the fixed recognition problem asks whether it is possible to con-
struct a given string using the grammar. A class of grammars is a collection
of grammars representing the same algorithm over a range of stringsets deter-
mined by parameters of the algorithm. In this context the universal recognition
problem asks, given specific values for the parameters and a string, whether that
string can be constructed by the corresponding grammar.
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3.17 Recursively Enumerable (r.e.)

Definition 52 (r.e.) A stringset L is in the class r.e. iff there is an algorithm
which computes a function f mapping N to Σ∗ for which {f(i) | i ∈ N} = L
(i.e., the range of f is L).

Lemma 53 Rec ( r.e.

A recursive enumerator is, in effect, an algorithm for searching through the set
of strings in L. While if we happen to find a string w we can be certain that
w ∈ L, if, on the other hand, we have not found w after searching for some finite
time there is, in general, no way of knowing whether w 6∈ L or we just haven’t
found it yet. Hence the search terminates iff w ∈ L. In fact, Rec is exactly
that subclass of r.e. for which there is some algorithmic means of terminating
the search.

3.18 Grammars for SL

Alice people

lovepeoplesleepsAlice

love Alicesleeps

Alice

⋊ people love Alice ⋉⋊ Alice sleeps ⋉

⋉sleepsAlice

sleeppeople

loves love AliceAlice

people⋊ love people

⋊

sleep ⋉

⋊

sleepsAliceloves

⋉people

⋉Alice

loves Boblovepeople

⋊ Alice

⋉

⋉

3.19

Definition 54 A strictly k-local grammar is a tuple G = 〈Σ, A, P 〉, where

A ⊆ {⋊ · w · ⋉ | w ∈ Σ∗, |w| < (k − 1)} ∪
{⋊ · w | w ∈ Σ∗, |w| = (k − 1)}

P ⊆ {〈w, σ〉 | w ∈ Σ∗ |w| = (k − 1) and σ ∈ Σ ∪ {⋉} }

3.20 Example

G34 = 〈Σ34, A34, P34〉

Σ34 = {Alice, sleeps, loves, people, sleep, love}
A34 = { ⋊Alice sleeps, ⋊Alice loves,

⋊people sleep, ⋊people love }
P34 = { 〈Alice loves, Alice〉, 〈Alice loves, people〉,

〈people love, Alice〉, 〈people love, people〉,
〈Alice sleeps, ⋉〉, 〈people sleep, ⋉〉,
〈lovesAlice, ⋉〉, 〈loves people, ⋉〉,
〈loveAlice, ⋉〉, 〈love people, ⋉〉 }
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3.21 Derivations

Definition 55 (Derives relation) If G = 〈Σ, A, P 〉 is a strictly k-local gram-
mar, then w1 directly derives w2 in G:

w1 =⇒
G

w2
def
⇐⇒ w1 = u · v, w2 = u · vσ and 〈v, σ〉 ∈ P.

A derivation of wn from w1 in G is a sequence of one or more strings:

〈w1, w2, . . . , wn〉 where wi =⇒
G

wi+1, i < n.

A string w1 derives wn in G:

w1
∗

=⇒
G

wn

def
⇐⇒ there is a derivation of wn from w1 in G.

3.22 Stringset generated by a strictly k-local grammar

Definition 56 The stringset generated by a strictly k-local grammar G = 〈Σ, A, P 〉
is

L(G)
def
= {w ∈ Σ∗ | w1

∗
=⇒
G

⋊w⋉, w1 ∈ A}.

Lemma 57 If D ⊆ Fk(⋊ · Σ∗⋉) is a strictly k-local description and G
def
=

〈Σ, AD, PD〉 where

AD = ((⋊ · Σ∗) ∪ (⋊ · Σ∗⋉)) ∩ D
PD = {〈v, σ〉 | vσ ∈ (D − AD)}

then L(D) = L(GD).

3.23 Equivalence of strictly k-local description, scanners
and grammars

Theorem 58 The following are equivalent:

• L ∈ SL

• L = L(D) for a strictly k-local description D

• L = L(M) for a strictly k-local scanner M

• L = L(G) for a strictly k-local grammar G

3.24 Relationship between strictly k-local classes (I)

Lemma 59 SLi ⊆ SLj for all i ≤ j.

Proof To see that SLi ⊆ SLi+1 for all i, note that any strictly i-local description
Di can be extended to an equivalent strictly i+ 1-local description Di+1 in the
following way:

Di+1
def
= {⋊w⋉ | ⋊w⋉ ∈ Di} ∪ {σ1σ2 · · ·σi+1 | σ1σ2 · · ·σi, σ2 · · ·σi+1 ∈ Di}
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That L(Di+1) = L(Di) can be verified by considering the derivations of the
grammars for Di and Di+1: these are identical except that the derivation for
Di+1 starts with the second string of the derivation for Di. (This is clearest,
perhaps, if one considers the grammars in terms of tiles.)
The full lemma then follows by the fact that ⊆ is reflexive and transitive. ⊣⊣⊣

3.25 Recognition via generation

Theorem 60 (SL ⊆ Rec (again)) Both the fixed and universal recognition prob-
lem for SL are decidable.

Proof Derivations in strictly k-local grammars grammars are strictly length
increasing: if w =⇒

G
v then |v| > |w| (in fact, |v| = |w|+1). Thus, no derivation

for a string of length l can take more than l+1 steps. (In fact the only derivation
of the string, should it exist, will take exactly l + 1 steps.) So if we search our
derivations exhaustively in order of increasing length, we can stop searching
when we see the first derivation of length greater than l+1. If we haven’t found
the string we are looking for by then, we never will.
The fact that the universal recognition problem is decidable, again, follows from
the fact that the construction of the k-local grammar from an SLk description
is effective. ⊣⊣⊣

3.26 Identification in the limit

〈w0, w1, . . . , wn〉 Mn

IIM

I

Definition 61 (Gold) A class of stringsets is learnable in the limit from posi-
tive data if there is a computable function I mapping finite sequences of strings
to automata for the class such that, if ℓ : N → Σ∗ is an enumeration of L then
there will be some i ∈ N such that, for all n ≥ i,

1. I(〈ℓ(0), ℓ(1), . . . , ℓ(i), . . . , ℓ(n)〉) = I(〈ℓ(0), ℓ(1), . . . , ℓ(i)〉) and

2. L(I(〈ℓ(0), ℓ(1), . . . , ℓ(n)〉)) = L.

Theorem 62 For all k, the class of SLk stringsets is learnable in the limit.

Proof Suppose L = L(DL) for some k-local description DL. Without loss of
generality, there are no useless k-factors in DL, i.e., DL =

⋃
w∈L[Fk(⋊w⋉)].

Suppose ℓ is any enumeration of L. Let

I(〈ℓ(0), ℓ(1), . . . , ℓ(n)〉) = Mn = 〈Σ, Tn〉, where Tn
def
=

⋃

0≤i≤n

[Fk(⋊ℓ(i)⋉)].

We claim that, since ℓ enumerates L, there will be some i for which Tn = DL.
Certainly, Tn ⊆ DL for all i. To see that there is some i for which Tn ⊇ DL
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as well, for all n ≥ i, suppose f ∈ DL. Then there is some w ∈ L such that
f ∈ Fk(⋊w⋉). Since ℓ enumerates L there is some i such that w = ℓ(i). Then
f ∈ Tn for all n ≥ i.
From that point on Mn = Mi and L(Mn) = L(DL) = L. ⊣⊣⊣

3.27 Suffix Substitution Closure

· · · · · ·

u2 v2

· · ·· · ·

u2

· · ·· · ·

· · · · · ·

u1 v1

v2u1

v1

⋊

⋊

⋊

⋊

σ

σ

σ

σ ⋉

⋉

σ

σ ⋉

σ

σ

⋉

Lemma 63 ((2-Local) Suffix Substitution Closure) If L is a strictly 2-
local stringset then for all strings u1, v1, u2, and v2 in Σ∗ and all symbols σ in
Σ:

u1σv1 ∈ L and u2σv2 ∈ L⇒ u1σv2 ∈ L.

3.28 SSC characterizes SL

Theorem 64 (Suffix Substitution Closure) A stringset L is Strictly Local
iff there is some k such that whenever there is a string x of length k − 1 and
strings u1, v1, u2, and v2, such that

u1 · x · v1 ∈ L
u2 · x · v2 ∈ L

then it will also be the case that

u1 · x · v2 ∈ L

3.29 Proof of SSC (⇐)

Suppose that L is closed under k-local suffix substitution. Let

DL
def
= ∪w∈L[Fk(⋊w⋉)].

We claim that L(DL) = L.

(L ⊆ L(DL))
w ∈ L⇒ Fk(⋊w⋉) ⊆ DL ⇒ w ∈ L(DL)

(L(DL) ⊆ L (∅ case))

L = ∅ ⇒ DL = ∅ ⇒ L(DL) = ∅.

Assume, for the remainder of the proof, that there is at least one string in L
and, consequently (since L ⊆ L(DL)), in L(DL).
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3.30 Proof of SSC (non-∅ case)

Suppose that w = σ1 · σ2 · · ·σn ∈ L(DL). Then there is a derivation in the
corresponding generator which is of the form:

〈⋊σ1 . . . σk−1, σ1 . . . σk−1σk, · · · , σn−k . . . σn−2σn−1, σn−(k−1) . . . σn−1σn⋉〉

The idea of the proof is to search through strings we know to be in L for those
that agree with w on increasingly long prefixes. At stage i we will have some
wi ∈ L which agrees with w in its first i positions. We will use the fact that the
next k-factor of w, σi−(k−2) · · ·σiσi+1, is in DL to show that there is some string
zi in L in which that k-factor occurs and then use suffix substitution closure to
show that there is a string with the prefix from wi and the suffix from zi which
agrees with w in its first i+ 1 positions.

3.31 Proof of SSC (construction)

n ≤ k − 2 ⇒ ⋊σ1 · · ·σn⋉ ∈ DL

⇒ ⋊σ1 · · ·σn⋉ ∈ Fk(⋊ · v · ⋉) for some v ∈ L⇒ v = w.

Note that n could be 0, in which case v is ε.

(Stage 0) Otherwise n ≥ k − 1 and the k-factor ⋊σ1 · · ·σk−1 ∈ DL. By
construction of DL there is some string z ∈ L that starts with σ1 · · ·σk−1.
Choose any one of these for wk−1.

(Invariants) For all k − 1 ≤ i ≤ n:

1. wi ∈ L.

2. wi = ui · σi−(k−2) · · ·σi · vi where ui = σ1 · σ2 · · ·σi−(k−1)

(ε if i=k-1) and vi ∈ Σ∗.

(Exercise) Verify that these invariants are true for wk−1.

(Stage k ≤ i < n)

w = σ1 σ2 · · · σi−(k−1) σi−(k−2) · · · σi−1 σi σi+1 · · · σn

wi = σ1 σ2 · · · σi−(k−1) σi−(k−2) · · · σi−1 σi vi ∈ L
zi = xi σi−(k−2) · · · σi−1 σi σi+1 yi ∈ L

wi+1 = σ1 σ2 · · · σi−(k−1) σi−(k−2) · · · σi−1 σi σi+1 yi ∈ L

wi ∈ L by Invariant 1.
Since σi−(k−2) · · · σi−1 σiσi+1 ∈ Fk(w) ⊆ DL,

σi−(k−2) · · · σi−1 σiσi+1 ∈ zi, for some zi ∈ L.
zi = xi · σi−(k−2) · · · σi−1 σiσi+1 · yi.
Since L closed under substitution of suffixes that start with the same (k − 1)-
factor,

wi+1 = σ1 σ2 · · · σi−(k−1) · σi−(k−2) · · · σi−1 σi · σi+1 yi ∈ L

(Stage n)
By the invariants: wn = unσn−(k−2) · · ·σnvn, where

un = σ1 · σ2 · · ·σn−(k−1) (possibly ε).
Since w ∈ L(DL) andw ends with σn−(k−2) · · ·σn, the k-factor σn−(k−2) · · ·σn⋉ ∈
DL and there must be some

zn = xn · σn−(k−2) · · ·σn ∈ L.
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Since both wn = unσn−(k−2) · · ·σnvn and zn = xn · σn−(k−2) · · ·σn · ε are in L
which is closed under substitution of suffixes that start with the same (k − 1)-
factor,

wn = unσn−(k−2) · · ·σn · ε ∈ L.

3.32 Non-SL Stringsets

(∀L ⊆ Σ∗)[ L ∈ SL ⇒
(∃k)[

(∀u1, v1, u2, v2 ∈ Σ∗, x ∈ Σk−1)[
u1xv1 ∈ L and u2xv2 ∈ L⇒ u1xv2 ∈ L ]

]
]

To show that L 6∈ SL (by contrapositive) it suffices to show

(∀k)[
(∃u1, v1, u2, v2 ∈ Σ∗, x ∈ Σk−1)[

u1xv1 ∈ L and u2xv2 ∈ L and u1xv2 6∈ L ]
]

3.33 Adversary Arguments

(∀k)[ (∃u1, v1, u2, v2 ∈ Σ∗, x ∈ Σk−1)[
u1xv1 ∈ L and u2xv2 ∈ L and u1xv2 6∈ L ] ]

∀—adversary’s choice, ∃—your choice

• Your adversary, claiming that there is a k-local automaton that recognizes
L, chooses k.

• You now choose two strings u1xv1 and u2xv2. Your choice should depend
on the specific value of k your adversary chose (as well, of course, as on
L).

• You win iff the two strings you chose witness that the stringset does not
satisfy the theorem, i.e., iff

– u1xv1 and u2xv2 are both in L and

– u1xv2 is not in L.

3.34 Example

Consider the stringset

L3.34 = {wabv | w, v ∈ {a, b}∗}

To show that this is not SLk, suppose (for contradiction) that it was SLk for
some k. (Adversary chooses k.) Then it would exhibit the k-Suffix Substitution
Property. Now both the strings akb and abak are in L3.34 (our choice of strings)
and these can be broken down as follows

a︸︷︷︸
u1

a · · · a︸ ︷︷ ︸
k−1

b︸︷︷︸
v1

and ab︸︷︷︸
u2

a · · ·a︸ ︷︷ ︸
k−1

a︸︷︷︸
v2
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By the Suffix Substitution Closure Property, then, u1a
k−1v2 = aak−1a would

also be in L3.34. But it is not. In this way, reasoning from the supposition that
L3.34 ∈ SLk we obtain a contradiction. Hence L3.34 6∈ SLk for any k.

Theorem 65 No stringset modeling English is SL2

I · absented · myself ∈ E
You · absented · yourself ∈ E

I · absented · yourself 6∈ E

Theorem 66 No stringset modeling English is SL

Example 67

Which girls do they think ·

(k−1)/3
z }| {

(that they think) · were responsible ∈ E

Which girl do they think ·

(k−1)/3
z }| {

(that they think) · was responsible ∈ E

Which girls do they think ·

(k−1)/3
z }| {

(that they think) · was responsible 6∈ E

3.35 Relationship between strictly k-local classes (II)

Lemma 68 SLi ( SLj for all i ≤ j.

Proof The inclusion is Lemma 59. On the other hand, it is easy to see that, for
any given i, there are SLi+1 stringsets that are not SLi, the singleton stringset
{ai}, for example. (Verify this.) ⊣⊣⊣

Theorem 69 (The SL hierarchy) The classes of SLk stringsets form a proper
hierarchy:

SL2 ( SL3 ( · · · SLi ( SLi+1 ( · · · ( SL.

3.36 Finite stringsets and SL

Fin

SL2SL3SL4

SL

· · · · · ·

We have already seen that every finite stringset is SLk for some k and that for
all k, SLk includes non-finite stringsets. Consequently, Fin ( SL. On the other
hand, it is again easy to see that, for any given k, there are finite stringsets that
are not SLk, the singleton stringset {ak}, works here as well.
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3.37 SL is not learnable

Theorem 70 The class SL as a whole is not learnable in the limit from positive
data.

Proof
Let ℓ(i)

def
= ai. Then ℓ is an enumeration of La∗ = {ai | 0 ≤ i} ∈ SL2. Suppose

I is an IIM that learns La∗ from the enumeration ℓ. Then there is some i for
which I converges on an automaton for La∗ . Let

ℓi(j) =

{
aj j ≤ i,
ai otherwise.

Then ℓi is an enumeration of La≤i = {aj | 0 ≤ j ≤ i}, a finite set and, therefore,
SL. But ℓi(j) and ℓ(j) agree for all 0 ≤ j ≤ i and, therefore, when fed the
enumeration ℓi, I must converge on an automaton for La∗ , an error.
Thus for any IIM that learns La∗ there is some stringset La≤i which it cannot
learn. Since both stringsets are SL no IIM can learn all of SL. ⊣⊣⊣

3.38 Intersection of SL stringsets.

Lemma 71 The class SLk, for each k, is effectively closed under intersection,
as is SL as a whole.

Proof Suppose L1 and L2 are SLk. Then each is defined by some strictly
k-local description. Let L1 = L(D1) and L2 = L(D2).
Suppose, now, that some string w is in L1 ∩ L2. Then

Fk(⋊w⋉) ⊆ D1 and Fk(⋊w⋉) ⊆ D2.

Thus Fk(⋊w⋉) ⊆ D1 ∩ D2.
Conversely, suppose Fk(⋊w⋉) ⊆ D1 ∩D2. Then Fk(⋊w⋉) must be a subset of
each of D1 and D2 separately. Consequently, w ∈ L(D1) and w ∈ L(D2), which
is to say w is in L1 ∩ L2.
Thus

L1, L2 ∈ SLk ⇒ L1 ∩ L2 ∈ SLk.

as witnessed by
L(D1 ∩ D2) = L(D1) ∩ L(D2).

Since SLk is closed under intersection for each k, SL as a whole is as well. ⊣⊣⊣

3.39 Union of SL stringsets

Lemma 72 The class of strictly local stringsets is not closed under union.

Proof Let
L1 = {aibj | i, j ≥ 0} and L2 = {biaj | i, j ≥ 0}

Both L1 and L2 are SL2. (You should verify this by thinking about what the
descriptions look like.)
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We claim that L1 ∪ L2 6∈ SLk, for any k. To see this, suppose, by way of con-
tradiction, that it was SLk for some k. (Adversary chooses k.)
Then it would satisfy k-Suffix Substitution Closure. But abk−1 ∈ L1 ∪L2, since
it is in L1, and bk−1a ∈ L1 ∪ L2, since it is in L2, (our choice of strings) and,
by Suffix Substitution Closure, this implies that abk−1a ∈ L1 ∪L2, which is not
the case. Hence, L1 ∪ L2 is not SLk, for any k. ⊣⊣⊣

3.40 Complement of SL stringsets.

Definition 73 (Relative complement) The complement of a set S1 rela-

tive to another S2 is the set-theoretic difference between them: S2 − S1
def
=

{x | x ∈ S2 and x 6∈ S1}.

Definition 74 (Complement of a stringset) The complement of a stringset

L over Σ is: L
def
= Σ∗ − S.

Lemma 75 The class of strictly local stringsets is not closed under complement
.

Proof The fact that SL is closed under intersection but not under union implies
that it is not closed under complement since, by DeMorgan’s Theorem

L1 ∪ L2 = L1 ∩ L2.

We know that the intersection of SL stringsets is also SL. If the complement of

SL stringsets was also necessarily SL, then L1 ∩ L2 would be SL contradicting
the fact that there are SL stringsets whose union are not SL. ⊣⊣⊣

(Exercise) Let L76 = {aibj | i, j ≥ 0}. We have already checked that L76 ∈
SL2. Show, using Suffix Substitution Closure, that L76 6∈ SL2.

3.41 Concatenation of SL stringsets

Lemma 77 The class of strictly local stringsets is not closed under concatena-
tion.

Proof Let L1 = {wa | w ∈ {a, b}∗} and L2 = {bv | v ∈ {a, b}∗}. These are both
SL2 as witnessed by

D1 = {⋊a,⋊b, aa, ab, ba, bb, a⋉}

and
D2 = {⋊b, aa, ab, ba, bb, a⋉, b⋉}

But their concatenation is just the stringset of the example of Section 3.34:

L3.34
def
= {wabv | w, v ∈ {a, b}∗}

which we have shown to be non-SL. ⊣⊣⊣
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3.42 Kleene closure of SL stringsets

Lemma 78 The class of strictly local stringsets is not closed under Kleene
closure.

Proof Laa
def
= {aa} ∈ SL3 (as witnessed by {⋊aa, aa⋉}) and also SLk for any

k > 3 (as witnessed by {⋊aa⋉}).
But (Laa)∗ = {a2i | i ≥ 0} which is not SL. ⊣⊣⊣

(Exercise) Show that (Laa)∗ 6∈ SL.

3.43 Closure of SL2 under Kleene closure

Lemma 79 The class of strictly 2-local stringsets is closed under Kleene clo-
sure.

Proof Exercise. You might think of this in terms of Myhill graphs. Show that,
given a Myhill graph for an SL2 stringset L, one can effectively extend it to one
for L+ and then to L∗. ⊣⊣⊣

4 Propositional Languages for Strings—Locally
Testable Stringsets

Suppose that V is a transitive verb and that N is a noun phrase of length at
least k−1 which can serve as either the subject or the object of V. We can then
factor the string ‘N V N’ in both of the following ways:

ε · N · V N ∈ E
N V · N · ε ∈ E
ε · N · ε 6∈ E

Hence, in the presence of strings of arbitrary length which don’t include a main
verb and that can either start or end an expression, a strictly local description
cannot enforce the presence of a main verb.
Strictly local descriptions can forbid the occurrence of a factor.
Strictly local descriptions cannot (in general) require the occurrence of a factor.
Complements of strictly local stringsets (co-SL = {L | L ∈ SL}) can require the
occurrence of a factor, but cannot forbid it.
Since SLk closed under intersection, adding closure under complement gives
closure under all Boolean operations.

4.1 k-Expressions

Definition 80 (k-Expressions over Strings) The language of k-expressions
(over strings) is the smallest set including:

• Atomic formulae: f ∈ Fk(⋊ · Σ∗ · ⋉) is a k-expression.

• Disjunction: If ϕ1 and ϕ2 are k-expressions then (ϕ1∨ϕ2) is a k-expression

• Negation: If ϕ1 is a k-expression then (¬ϕ1) is a k-expression.



ESSLLI’07—Formal Description of Syntax 26

Definition 81 (Satisfaction of k-Expressions) If w is a string and ϕ a k-
expression, then

w |= ϕ
def
⇐⇒






ϕ = f ∈ Fk(⋊ · Σ∗ · ⋉) and f ∈ Fk(⋊ · w · ⋉),
ϕ = (ϕ1 ∨ ϕ2) and w |= ϕ1 or w |= ϕ2,
ϕ = (¬ϕ1) (i.e., otherwise) and w 6|= ϕ.

4.2 Defined connectives

1. (ϕ ∧ ψ) , (¬((¬ϕ) ∨ (¬ψ))) (conjunction),

2. (ϕ→ ψ) , ((¬ϕ) ∨ ψ)) (implication),

3. (ϕ↔ ψ) , ((ϕ ∧ ψ) ∨ ((¬ϕ) ∧ (¬ψ))) (bi-conditional), . . . .

4.3 Capabilities of k-Expressions

(⋊ my)
∧ (father)
∧ (loved the woman⋉)
∧ ( (my father) ∨ (my father’s) )
∧ (¬(father father’s) )
∧ (¬(father’s loved) )

...

my

≥0︷ ︸︸ ︷
(father’s) father loved the woman

4.4 Locally Testable stringsets

Definition 82 (Locally testable stringsets) A stringset L is Locally k-Testable
(LTk) iff there is a k-expression ϕ such that:

L = L(ϕ)
def
= {w | w |= ϕ, w finite}

A stringset L is Locally Testable (LT) iff it is Locally k-Testable for some k.

Theorem 83 LT recognition is decidable.

Proof: Exercise

4.5 LT and SL

Lemma 84 (SLk ⊆ LTk) A stringset L is Strictly k-Local iff it is definable by
a k-expression in the form: ∧

fi 6∈G

[¬fi].

where G is the strictly local description defining L.



ESSLLI’07—Formal Description of Syntax 27

Proof This is satisfied by all and only those strings in which no k-factor that
is not in G occurs, that is, in which the k factors that do occur are limited to
those in G. Conversely, given a conjunction of negated k-factors, as in (84), we
can convert it to an equivalent SLk description by taking the complement (with
respect to the set of all k-factors in ⋊·Σ∗ ·⋉) of the set of k-factors it includes. ⊣⊣⊣

Lemma 85 The class of Locally k-Testable stringsets is the closure of the class
of Strictly k-Local stringsets under Boolean operations.

Proof That every Boolean combination of Strictly k-Local stringsets is Locally
k-Testable follows from Lemma 84 and closure of the class of k-expressions un-
der the Boolean connectives. That every LTk stringset is a Boolean combination
of SLk stringsets follows from the fact that every k-expression is a Boolean func-
tion of k-factors and that every k-factor f is logically equivalent to the negation
of a k-expression in the form of (84): ¬(

∧
[¬f ]) (where the conjunction is over

only the single negated factor ¬f). ⊣⊣⊣

Example 86 Let

G86 = { ⋊which, which girls, girls do, which girl, girl do,
do they, they think, think that, that they,
think were, were responsible,
think was, was responsible, responsible⋉ }

G86 is an SL2 description that defines L67 except that it does not require number
agreement. To enforce number agreement we just convert it to LT2 form and
reject co-occurrence of girls and was or girl and were:

ϕ67 =
∧

fi 6∈G86

[¬fi] ∧ ¬(girls ∧was) ∧ ¬(girl ∧were)

Then L67 = L(ϕ67).

Theorem 87 (SL ( LT) The class of strictly local stringsets is a proper subset
of the class of locally testable stringsets.

L67 ∈ LT − SL.

4.6 Character of the locally testable sets

Theorem 88 (Local Test Invariance) A stringset L is Locally Testable iff

there is some k such that, for all strings x and y:

if Fk(⋊ · x · ⋉) = Fk(⋊ · y · ⋉)

then x ∈ L⇔ y ∈ L.
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Again, this is a characterization. If there is some k for which a given stringset
is the union of some subset of the classes of strings that are equivalent in this
sense then we can form a k-expression that is satisfied by all and only the strings
in those classes.
(Exercise) Suppose L exhibits k-test invariance. Show how to construct a
k-expression that defines L. Show that your construction produces a finite k-
expression even though L may be infinite. Show that a string w satisfies your
k-expression iff w ∈ L.

4.7 LT equivalence

Theorem 89 For all x, y ∈ Σ∗ let

x ≡k y
def
⇐⇒ Fk(⋊ · x · ⋉) = Fk(⋊ · y · ⋉).

Let [x]k
def
= {y | y ≡k x}. Then

1. ≡k partitions Σ∗:

• Σ∗ =
⋃

x∈Σ∗ [[x]k]

• for all x, y ∈ Σ∗ either [x]k = [y]k or [x]k ∩ [y]k = ∅

2. {[x]k | x ∈ Σ∗} is finite.

3. If ϕ is a k-expression and w ≡k v then w |= ϕ⇔ v |= ϕ.

4. L ∈ LT iff L =
⋃

[S] for some k and some S ⊆ {[x]k | x ∈ Σ∗}.

Observation 90 There are only finitely many LTk stringsets for any given Σ
and k.

4.8 Disjunctive Normal Form

Lemma 91 Every k-expression is equivalent, in the sense of defining the same
set of strings, to a k-expression which is disjunction of conjunctions of literals:
k-factors and negated k-factors.

Proof The set of strings that are LTk-equivalent to w is definable as:

[w]k = L(
∧

f∈Fk(⋊w⋉)[f ] ∧
∧

f 6∈Fk(⋊w⋉)[¬f ])

Since there are only finitely many k-factors over a given alphabet Σ this is a
finite conjunction of literals.
Since every LT stringset is a finite union of LT-equivalence classes, every LT
stringset is definable as a finite disjunction of such formulae. ⊣⊣⊣
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4.9 Cognitive interpretation of LT

• Any cognitive mechanism that can distinguish member strings from non-
members of an LTk stringset must be sensitive, at least, to the set of
length k blocks of events that occur in the presentation of the string.

• If the strings are presented as sequences of events in time, then this cor-
responds to being sensitive, at each point in the string, to the length k
blocks of events that occur at any prior point.

• Any cognitive mechanism that is sensitive only to the set of length k blocks
of events in the presentation of a string will be able to recognize only LTk

stringsets.

4.10 LT Automata

a

b

ba

b a

b b

a

b

aa

φ

Boolean
Network

a b a b a b a b a babababa

a a b b

4.11 Constructing LT2 transition graphs

Given ϕ a 2-expression over Σ:
Vertices are states of the LT2 automaton for ϕ:

〈σi, Si〉 ∈ (Σ ∪ {⋊,⋉}) × P(Fk(⋊ · Σ∗ · ⋉)).

• Initial vertex: 〈⋊, ∅〉.

• For each vertex 〈σi, Si〉 (σi 6= ⋉), in turn, and each σ ∈ Σ ∪ {⋉},

– if 〈σ, Si ∪ {σiσ}〉 is not yet in the vertex set, add it

– in any case, add an edge labeled σ from 〈σi, Si〉 to 〈σ, Si ∪ {σiσ}〉.

• For each vertex 〈⋉, Si〉 if there is some w such that w |= ϕ and Fk(⋊w⋉) =
Si, mark the vertex as accepting.
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4.12 LT transition graphs
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Theorem 92 Emptiness of LT stringsets is decidable.

Proof: exercise

Theorem 93 Universality of LT stringsets is decidable.

Proof: exercise

Theorem 94 Finiteness of LT stringsets is decidable.

Proof: exercise
(Exercise) Give a finite LT2 stringset over {a, b} which has no finite LT2 su-
perset.

4.13 Learnability of LTk and LT

Theorem 95 For all k, the class of LTk stringsets is learnable in the limit.

Proof: Exercise.

Theorem 96 The class LT, as a whole, is not learnable in the limit from pos-
itive data.

Since SL ⊆ LT the counter-example witnessing that SL is not learnable works
for LT as well.

4.14 Non-LT stringsets

One of the consequences of the characterization by local test invariance is that
LT descriptions cannot distinguish between a single occurrence and multiple
occurrences of main verbs.
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Example 97

my

k−3
z }| {

(father’s) father resembled my

k−3
z }| {

(father’s) father ∈ E

my

k−3
z }| {

(father’s) father resembled my

k−3
z }| {

(father’s) father resembled my

k−3
z }| {

(father’s) father 6∈ E

There is a pair of strings of this form for every k ≥ 3 in which the symbol
“father’s” is iterated k − 3 times. In each such pair the strings have exactly
the same sets of k-factors. Hence, there can be no k-expression that correctly
distinguishes each pair.

4.15 Relationship between locally k-testable classes

Theorem 98 (The LT hierarchy) The classes of LTk stringsets form a proper
hierarchy:

LT2 ( LT3 ( · · ·LTi ( LTi+1 ( · · · ( LT.

That LTi ⊆ LTi+1 follows from the fact that every i-expression can be extended
to an (i+ 1)-expression by extending the atomic formulae in the same way that
one extends the k-factors of an SLk definition to k+1 factors. That the inclusion
is proper is witnessed, again, by the fact that {ai} ∈ LTi+1 − LTi.
(Exercise) Verify that {ai} ∈ LTi+1 − LTi.

4.16 Closure properties

The classes LT, as well as LTk for each k, are closed under all Boolean operations
by definition.

Lemma 99 (Non-closure under concatenation) The class of locally testable
stringsets is not closed under concatenation.

Note that the prefixes that precede the main verb of the strings of Example 97
are definable by a k-expression, actually by a 2-expression, as are the suffixes
that start at the main verb in the strings that have single main verbs. Since
the main verb is permitted to occur only in the initial position of these suffixes,
they can be distinguished from those containing more than one main verb by
a k-expression. Thus, if the LT stringsets were closed under concatenation,
we would be able to distinguish the first string (the concatenation of two LT
stringsets) from the second. Hence, the example witnesses the fact that the LT
stringsets are not, in general, closed under concatenation.

Lemma 100 (Non-closure under Kleene closure) The class of locally testable
stringsets is not closed under Kleene closure.

The counterexample establishing non-closure of SL under Kleene closure ((Laa)∗

of Lemma 78) suffices to establish non-closure of LT under Kleene closure as
well: all strings in the set {ai | i ≥ k} have exactly the same set of k-factors and
are, therefore, in the same class in the sense of k-test invariance. But some of
these are of even length and should be included in (Laa)∗ and some odd and
should not.
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5 First-Order Languages for Strings

5.1 FO(⊳+) (Strings)

〈D, ⊳, ⊳+, Pσ〉σ∈Σ

Variables ranging over positions in the strings: X0 = {x0, x1, . . .}

Atomic formulae: x ⊳ y, x ⊳+ y, x ≈ y, Pσ(x), x, y ∈ X0

First-order Quantification: (∃x)[ϕ], x ∈ X0

5.2 Semantics of FO languages

Definition 101 (Free and Bound Variables) A variable x occurring in a
formula is bound iff it occurs within the scope (within the ‘[. . .]’) of a quantifier
binding it: (∃x). A variable is free iff it is not bound.

~x denotes a sequence of variables 〈x0, x1, . . . , xn−1〉.
ϕ(x0, . . .) denotes a formula with free variables among, but not necessarily in-
cluding all of, x0, . . ..

Definition 102 (Assignments) An assignment for a model A is a partial
function (one that may be undefined for some elements of its domain) mapping
variables in X0 to the domain of A.
If s is an assignment for A and a is in the domain of A then then s[x 7→ a] is
the assignment that agrees with s on all variables except x to which it assigns a:

s[x 7→ a](y)
def
=

{
a if y = x,
s(y) otherwise.

Note that we do not require s to be undefined for x; it may be that s[x 7→ a]
rebinds x to a.

Definition 103 (Satisfaction) An assignment s satisfies a formula ϕ in a
model A (denoted A, s |= ϕ) iff one of the following holds:

• ϕ = ‘x ⊳ y’ , s(x) and s(y) are both defined and s(y) = s(x) + 1,

• ϕ = ‘x ⊳+ y’ , s(x) and s(y) are both defined and s(x) < s(y),

• ϕ = ‘Pσ(x)’ , s(x) is defined and s(x) ∈ Pσ,

• ϕ = ‘x ≈ y’ , s(x) and s(y) are both defined and s(x) = s(y),

• ϕ = ‘(ψ1 ∨ ψ2)’ and either A, s |= ψ1 or A, s |= ψ2,

• ϕ = ‘(¬ψ)’ and A, s 6|= ψ, or

• ϕ = ‘(∃x)[ψ]’ and, for some a in the domain of A, A, s[x 7→ a] |= ψ.
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5.3 ⊳ is definable from ⊳+

Let
x ◭ y

def
= (x ⊳+ y ∧ ¬(∃z)[x ⊳+ z ∧ z ⊳+ y])

Then, for all models A and assignments s

A, s |= x ⊳ y ⇔ A, s |= x ◭ y

5.4 Logical Sentences

Definition 104 (Sentences) A (logical) sentence is a formula with no free
variables.
A model A satisfies a sentence (or not) independently of assignments:

A |= ϕ

5.5 Models of Sentences

If A |= ϕ we say that the model satisfies the sentence, that the sentence
is true in the model or that A is a model of the sentence.

Definition 105 (Models of a Set of Sentences) The set of Σ-models which
satisfy a given set of sentences Φ, the models of Φ, is denoted:

Mod(Φ)
def
= {A | A |= ϕ, for all ϕ ∈ Φ}

We say that

A |= Φ
def
⇐⇒ A ∈ Mod(Φ).

5.6 FO(⊳+) definable stringsets

Definition 106 L ⊆ Σ∗ is FO(⊳+) definable iff there is a finite set of
FO(⊳+) sentences Φ (equivalently, a single sentence ϕ(=

⋂
Φ)) such that L =

ModΦ.

Theorem 107 The fixed and universal recognition problems for the class of
FO(⊳+) definable stringsets are decidable.

Proof: exercise.

5.7 Capabilities of FO Definitions over Strings

NP(x, y)
def
= my(x) ∧ father(y) ∧ x < y∧

—NPs start with ‘my’ and end with ‘father’. . .

(∀z)[(x < z ∧ z < y) → father’s(z)]
— . . . with only ‘father’s’ occurring in between
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(∃x1, x2, x3, x5, x5)[
NP(x1, x2) ∧ resembles(x3) ∧ NP(x4, x5) ∧ x2 < x3 ∧ x3 < x4∧

—A sentence is an NP, ‘resembles’ and an NP, in order. . .

¬(∃y)[y < x1 ∨ (x2 < y ∧ y < x3) ∨ (x3 < y ∧ y < x4) ∨ ¬x5 < y]
]

— . . . and nothing else

my

≥0︷ ︸︸ ︷
(father’s) father resembledmy

≥0︷ ︸︸ ︷
(father’s) father

5.8 Logical Theories

Definition 108 (Theories of Models) The theory of a Σ-model A (in a given
language L(Σ)), denoted Th(A), is the set of all sentences of L(Σ) that are sat-
isfied by A:

Th(A)
def
= {ϕ ∈ L(Σ) | A |= ϕ}.

The theory of a set of models A is the set of all sentences satisfied by every
member of A:

Th(A)
def
= {ϕ ∈ L(Σ) | A |= ϕ, for all A ∈ A}.

Note that
Th(A) =

⋂

A∈A

[Th(A)].

5.9 Validities, Logical Equivalence

A sentence of L(Σ) is valid if it is satisfied in every Σ-model. The set of First-
Order validities of a given language L(Σ) is the FO theory of the set of all
Σ-models.

Definition 109 (L-equivalent Models) Two Σ-models A and B are equiv-
alent with respect to a logical language L, denoted A ≡L B, iff Th(A) = Th(B).

If L is First-Order, we say that A and B are elementary equivalent.

5.10 Consequences

Definition 110 (Logical Consequence) Given two sentences ϕ and ψ in a
language over Σ, we say that ψ is a logical consequence of ϕ (denoted ϕ |= ψ)
if every Σ-model A which satisfies ϕ also satisfies ψ:

ϕ |= ψ
def
⇐⇒ A |= ϕ ⇒ A |= ψ, for all Σ-models A.

A sentence ϕ is a logical consequence of a set of sentences Φ, all in L(Σ), iff
every Σ-model which satisfies all of the sentences in Φ also satisfies ϕ:

Φ |= ϕ
def
⇐⇒ A |= Φ ⇒ A |= ψ, for all Σ-models A.
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We will denote the consequences of a set of sentences Φ as:

Cn(Φ)
def
= {ϕ | Φ |= ϕ}

Note that ψ will be in Cn(Φ) iff whenever A |= ϕ for each ϕ ∈ Φ then A |= ψ as
well and that, for each ϕ ∈ Φ, it will be the case that ψ is in Cn(ϕ) iff whenever
A |= ϕ then A |= ψ. Hence, if ϕ ∈ Φ and ψ is in Cn(ϕ) then ψ will be in
Cn(Φ), that is: ⋃

ϕ∈Φ

[Cn(ϕ)] ⊆ Cn(Φ).

The consequences of the empty set of sentences, Cn(∅), are those sentences that
are satisfied by all models, since it is vacuously true that every sentence in ∅ is
satisfied by all models. Thus Cn(∅) in a language L(Σ) is the theory of the set
of all Σ-models, i.e., the validities of L(Σ).

Definition 111 (Relative Consequence) If Φ is a set of L(Σ) sentences and
C a class of Σ-models, then the consequences of Φ relative to C is

{ψ | A |= Φ ⇒ A |= ψ, for all A ∈ C}.

The class C is a meta-theoretic object; we put no restrictions whatsoever on
how it might be defined. Most commonly, C will be the class of finite Σ-models.
In general, the consequences of a set of sentences relative to the set of all finite
models may be quite different from its consequences relative to the set all models.
(In particular, note that any set of sentences that implies that the domain is
infinite will be unsatisfiable relative to the set of finite models.)

5.11 Relationship between consequences and models

All
Models

Cn(Φ ∪ Ψ)

Mod(Φ)

Mod(Ψ)

Cn(Φ)

Cn(Ψ)

Valid

All
Sentences

Mod(Φ ∪ Ψ) |=

5.12 Logical Equivalence

Definition 112 (Logically Equivalent Sentences) A pair of sentences ϕ
and ψ are logically equivalent if they are consequences of each other, i.e.
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iff both ϕ |= ψ and ψ |= ϕ. Similarly, a pair of sets of sentences Φ and Ψ are
logically equivalent if both Φ |= Ψ and Ψ |= Φ.

Φ and Ψ will be logically equivalent iff Ψ ⊆ Cn(Φ) and Φ ⊆ Cn(Ψ), i.e., iff
Cn(Φ) = Cn(Ψ).

5.13 Theories as sets of sentences

Definition 113 (Formal Theory) A (formal) theory is a set of sentences
Φ which is closed under logical consequence:

Φ |= ψ ⇒ ψ ∈ Φ.

A theory Φ is consistent iff there is no sentence ϕ for which ϕ,¬ϕ ∈ Φ.
A theory Φ is complete iff for every sentence ϕ either ϕ ∈ Φ or ¬ϕ ∈ Φ.

Since no model satisfies both a sentence ϕ and its negation ¬ϕ if any model
satisfies a theory Φ then Φ is consistent. Conversely, if no model satisfies Φ then
for all sentences ϕ it will be vacuously true that all models of Φ are also models of
ϕ; the Cn(Φ) will be the set of all sentences and will include, in particular, both
ϕ and ¬ϕ for every sentence ϕ. Hence, for our theories consistency coincides
with satisfiability.
By the same reasoning, if a theory ϕ is inconsistent, i.e., if it contains any pair of
sentences ϕ and ¬ϕ, then, because theories are closed under logical consequence,
it must include all sentences ψ. Hence there is exactly one inconsistent theory:
the set of all sentences in the language and we could define consistency of Φ by
the existence of some sentence ϕ 6∈ Φ.
The set of valid sentences of a language L(Σ), since it is the set of consequences
of ∅, is a subset of every theory. Moreover, it is non-empty, in fact, infinite: it
includes such sentences as (∀x)[x ≈ x] as well as all instances of the tautologies,
e.g., (∀x)[P (x)∨¬P (x)]. Thus no theory is empty; in fact every theory includes
an infinite subset. Perhaps surprisingly, the set of validities also includes, for
each ϕ and ψ related by consequence, an explicit statement of that relationship:

If ϕ |= ψ then ‘ϕ→ ψ’ ∈ Cn(∅).

This follows immediately from the definitions of → and of logical consequence.

5.14 Definable sets

Definition 114 (Definable Set of Models) A set of Σ-models A is defin-
able in a language L(Σ) iff there is a finite set of sentences Φ ⊆ LΣ such that
A = Mod(Φ).

Note that because we require our sets of axioms to be finite and because we
interpret sets of sentences conjunctively a set of models is definable iff there is
a single sentence ψ =

∧
ϕ∈Φ[ϕ] such that A = Mod(ψ).

Cn(Φ) = Th(Mod(Φ)) = Th(A).

Definition 115 (Relative Definability) A set of Σ-models A is definable
relative to a class of Σ-models C in a language L(Σ) iff there is a finite set
of sentences Φ ⊆ L(Σ) such that A = Mod(Φ) ∩ C.
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5.15 Character of FO-definable sets

Definition 116 (n-types) Suppose A is a model with domain A.
Let a ∈ A. The 1-type of a in A is:

tp(A, a)
def
= {ϕ(x0) | A, [x0 7→ a] |= ϕ(x0)}.

Let 〈a0, . . . , an−1〉 ∈ An. The n-type of 〈a0, . . . , an−1〉 in A is:

tp(A, 〈a0, . . . , an−1〉)
def
=

{ϕ(x0, . . . , xn−1) | A, [xi 7→ ai] |= ϕ(x0, . . . , xn−1)}.

The set of n-types realized in a model A is the set of n-types of the n-tuples
of its domain:

Sn(A)
def
= {tp(A,~a) | ~a ∈ An}.

Note that tp(A, a) is just simplified notation for tp(A, 〈a〉). Since types are
just sets of formulae, they are either satisfied by an assignment in a given model
or not. The tuples of points ~b which satisfy tp(A,~a) in A are just those for

which tp(A,~b) = tp(A,~a). We will refer to the n-tuples from the domain of
A which satisfy a given n-type as the tuples which inhabit the type in A.
The n-type of a tuple in A characterizes it up to logical indistinguishability. If
tp(A, a) = tp(A, b) then there is no First-Order formula that can distinguish
the point a ∈ A from the point b ∈ A. They are identical in terms of the
properties they exhibit that we can specify in FO. This is the motivation for
calling these types : the 1-types realized in a model categorize the members of
its domain into classes of points that are indistinguishable wrt FO. Similarly,
the n-types realized by a model categorize the n-tuples of points in the domain
into classes of logically indistinguishable tuples.
We can generalize this across models. Note that B, [~x 7→ ~b] |= tp(A,~a) iff the

set of formulae satisfied by [~x 7→ ~b] in B is exactly the same as the set satisfied

by [~x 7→ ~a] in A, i.e., ~b has the same type in B as ~a has in A:

B, [~x 7→ ~b] |= tp(A,~a) ⇔ tp(B,~b) = tp(A,~a).

Note that S0(A) is the set of 0-types that are realized in A. The 0-types contain
formulae with no free variables, that is, they are sets of sentences. Since they
depend only on the model, each model A realizes exactly one 0-type, the theory
of A:

tp(A, 〈 〉) = Th(A).

Sn(A) may well be infinite. Consider the model

A = 〈N,LT〉,

where N is the set of natural numbers ({0, 1, 2, . . .}) and LT = {〈i, j〉 | i < j}.
Suppose that i 6= j for an arbitrary pair i, j ∈ N. Without loss of generality,
assume that i < j. For j ≥ 0, let

ϕj(x0)
def
= (∃x1, . . . , xj)[

∧

0≤l 6=m≤j

[xl 6≈ xm] ∧
∧

0<l≤j

[LT(xl, x0)] ]
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The first conjunction says that there are j distinct points in the domain that
are also distinct from the point assigned to x0, the second says that they are
all less than the point assigned to x0. So if ϕj(x0) is true at some point, then
the domain must include at least j points that are less than that point. Clearly
then, ϕj(x0) will be satisfied in A by the assignment [x0 7→ j] but if i < j it will
not be satisfied by the assignment [x0 7→ i]. In other words ϕj(x0) ∈ tp(A, j)
but ϕj(x0) 6∈ tp(A, i) and the two types are distinct. Since there are infinitely
many pairs i < j ∈ N, there are infinitely many distinct types in S1(A). But
even though all of these types are distinguishable by formulae in the language,
no finite set of formulae will be able to distinguish all of them. Hence our actual
definitions will not be able to resolve the n-tuples of our models as finely as the
n-types do.

5.16 Quantifier Rank

Definition 117 (Quantifier Rank)

qr(ϕ)
def
=






0 if ϕ = ‘σ(~x)’ or ϕ = ‘x ≈ y’,
qr(ψ) if ϕ = ‘(¬ψ)’,
max(qr(ψ1), qr(ψ2)) if ϕ = ‘(ψ1 ∨ ψ2)’,
qr(ψ) + 1 if ϕ = ‘(∃x)[ψ]’.

5.17 (r, n)-types

Definition 118 ((r, n)-types) Suppose A is a model with domain A, and r ≥
0.
Let a ∈ A. The (r, 1)-type of a in A is:

tpr(A, a)
def
= {ϕ(x0) | qr(ϕ(x0)) = r and A, [x0 7→ a] |= ϕ(x0)}.

Let 〈a0, . . . , an−1〉 ∈ An. The (r, n)-type of 〈a0, . . . , an−1〉 in A is:

tpr(A, 〈a0, . . . , an−1〉)
def
=

{ϕ(x0, . . . , xn−1) | qr(ϕ(x0, . . . , xn−1)) = r and
A, [xi 7→ ai] |= ϕ(x0, . . . , xn−1)}.

The set of (r, n)-types realized in a model A is the set of (r, n)-types of the
n-tuples of its domain:

Sn
r (A)

def
= {tpr(A,~a) | ~a ∈ An}.

Since every formula of quantifier rank r can be converted to one of quantifier
rank r + 1 via vacuous quantification, if two tuples ~a and ~b have the same
(r, n)-type then they have the same (s, n)-type for all s ≤ r:

tpr(A,~a) = tpr(B,~b) ⇒ tpr−i(A,~a) = tpr−i(B,~b), 0 ≤ i ≤ r

Again, S0
r (A) will contain a single type tpr(A, 〈 〉), the set of sentences of quan-

tifier rank r which are satisfied by A. Let

Thr(A)
def
= tpr(A, 〈 〉).
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We will often use tp1
r(A) as simplified notation for tpr(A, 〈 〉) and will extend the

notation for logical equivalence with respect to a language to logical equivalence
with respect to the fragment of that language with quantifier rank r:

A ≡1,r B
def
⇐⇒ tp1

r(A) = tp1
r(B).

Lemma 119

(∃x0)[ϕ(x0)] ∈ tpr(A, 〈 〉) ⇔ ϕ(x0) ∈ tpr−1(A, a0), for some a0 ∈ A

and, more generally,

(∃xn)[ϕ(x0, . . . , xn)] ∈ tpr(A, 〈a0, . . . , an−1〉) ⇔
ϕ(x0 . . . , xn) ∈ tpr−1(A, 〈a0, . . . , an〉), for some 〈a0, . . . , an〉 ∈ An+1

This follows from the fact (by definition of |=) that:

A |= (∃x0)[ϕ(x0)] ⇔ A, [x0 7→ a0] |= ϕ(x0) for some a0 ∈ A

and, more generally,

A, s |= (∃xn)[ϕ(x0, . . . , xn)] ⇔
A, s[xn 7→ an] |= ϕ(x0 . . . , xn), for some an ∈ A

Lemma 120 tp0(A, 〈a0, . . . , an−1〉) = tp0(B, 〈b0, . . . , bn−1〉) iff

ai = aj ⇔ bi = bj , 0 ≤ i, j < n
〈ai1 , . . . , aim

〉 ∈ ρA ⇔ 〈bi1 , . . . , bim
〉 ∈ ρB, 0 ≤ i1, . . . , im ≤ n, ρ ∈ Rm

So the (r, n)-types that are realized by a model are determined by the (r−1, n+
1)-types it realizes and v.v.. In particular, the (r, n)-types are determined by
the (0, n+r)-types and the (unique) (r, 0)-type, the set of sentences of quantifier
rank r in the theory of the model, is determined by the (0, r)-types it realizes,
the sets of quantifier-free formulae that are satisfied by the r-tuples of points
from the model’s domain. And these, in turn, are determined by the atomic
formulae satisfied by those r-tuples.
Consequently, two models A and B will satisfy the same set of sentences of
quantifier rank r, i.e., tp1

r(A) = tp1
r(B), equivalently, S0

r (A) = S0
r (B), iff they

realize the same (0, r)-types, Sr
0(A) = Sr

0(B), i.e., iff for every r-tuple of points
in the domain of one of the models there is a corresponding r-tuple of points
in the domain of the other that satisfies exactly the same set of quantifier free
formulae, hence the same set of atomic formulae (each in their own model).

Lemma 121 The number of logically distinct formulae of quantifier rank r with
n free variables in any relational First-Order language L over a finite signature
is finitely bounded.

Corollary 122 The number of distinct (r, n)-types realizable in any class of
relational models is finite.
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Since there are only finitely many logically distinct formulae of quantifier rank
r with n free variables, there is some finite sequence of formulae

ϕ1(~x), ϕ2(~x), . . . , ϕm(~x)

which enumerates the formulae of tpr(A,~a) in the sense that every formula in
the type is logically equivalent to one of the ϕi(~x). We can characterize the
entire type, then, with the (finite) disjunction of these:

χA,~a
r (~x) =

∨

0<i≤m

[ϕi(~x)].

Note that qr(χA,~a
r (~x)) = r and it has n free variables, hence χA,~a

r (~x) ∈ tpr(A,~a).

Corollary 123 For every model A, every n-tuple ~a of points in the domain of
A, n ≥ 0, and r ≥ 0, there is a single FO formula χA,~a

r (~x) which characterizes
tpr(A,~a):

B, [~x 7→ ~b] |= χA,~a
r (~x) iff tpr(B,~b) = tpr(A,~a)

Moreover χA,~a
r (~x) ∈ tpr(A,~a)

Hence, we can use tpr(A,~a) and χA,~a
r (~x) more or less interchangeably. We will

refer to χA,~a
r (~x) as the characteristic formula of the type tpr(A,~a).

Theorem 124 A property of models P , a subset of the set of all models over a
relational signature Σ, is definable in L1(Σ) iff there is some r ≥ 0 such that,
for all Σ-models A and B

A ≡1,r B ⇒ A ∈ P ⇔ B ∈ P.

5.18 Concatenation and Types

Lemma 125

If tpr(A,~a) = tpr(B,~b) and tpr(C,~c) = tpr(D, ~d)

then tpr(A · C,~a · ~c) = tpr(B · D,~b · ~d).

Corollary 126

If A ≡1,r B and C ≡1,r D then A · C ≡1,r B · D.

5.19 LT and FO

It should be clear that there are First-Order formulae that pick out the set of
strings in which any given k-factor occurs. We need only to posit the existence
of a contiguous block of k positions in the string at which the symbols are those
given. Given the factor f = a0 · · · an−1 this would be:

ϕf , (∃x0, . . . , xn−1)[
∧

0≤i<(n−1)

[xi ⊳ xi+1] ∧
∧

0≤i<n

[Pai
(xi)] ].

We can capture the role of ‘⋊’ and ‘⋉’ as well by extending the formula with

· · · ∧ ¬(∃y)[y ⊳ x0] or · · · ∧ ¬(∃y)[xn−1 ⊳ y], respectively.

Since we have the same repertoire of logical connectives in both languages, we
can convert any given k-expression into a First-Order formula that picks out
exactly the set of strings that satisfy that expression. Hence the LT stringsets
will all be First-Order definable.
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5.20 Concatenation of FO(⊳+)-definable stringsets

Theorem 127 The class of FO-definable sets of ⊳+-string models is closed un-
der concatenation.

Suppose L1 and L2 are both defined by First-Order formulae. Suppose further,
without loss of generality, that the formulae only reference the beginning and
end of the string via two variables xmin and xmax, so the formulae are of the
general form:

(∃xmin, xmax)[¬(∃y)[y ⊳ xmin ∨ xmax ⊳ y] ∧ ϕi(xmin, xmax)]

where the actual work of the definition is done by ϕi(xmin, xmax).
To convert this into a formula (with the same general form) that picks out all
and only those strings that consist of a string from L1 concatenated with one
from L2 we can combine these into

(∃zmin, zmax)[
¬(∃y)[y ⊳ zmin ∨ zmax ⊳ y]∧
(∃z1, z2)[zmin ≤ z1 ∧ z1 ⊳ z2 ∧ z2 ≤ zmax ∧ ϕ1(zmin, z1) ∧ ϕ2(z2, zmax)] ]

The second line of the formula is the ϕL1·L2
. It posits the existence of adjacent

positions z1 and z2 in the string with ϕ1 holding from zmin through z1, inclusive,
and ϕ2 holding from z2 through zmax. Thus, under the assumption that ϕ1 and
ϕ2 pick out the strings in L1 and L2, respectively, the set of strings satisfying
the formula will be exactly those that are formed from the concatenation of
strings from L1 and L2.

5.21 Locally Testable with Order

Definition 128 (Locally Testable with Order (LTO)) The language of or-
dered k-expressions is constructed in the same way as the language of k-
expressions with the addition of the concatenation operator:

• if ϕ and ψ are ordered k-expressions, then ϕ•ψ is an ordered k-expression,
with

w |= ϕ • ψ
def
⇐⇒ w = w1 · w2, w1 |= ϕ and w2 |= ψ.

A stringset L is Locally k-Testable with Order (LTOk) iff there is an ordered
k-expression ϕ such that

L = L(ϕ) = {w | w |= ϕ, w finite}.

A stringset is Locally Testable with Order (LTO) iff it is Locally k-Testable
with Order for some k.

5.22 FO(⊳+) and LTO

Theorem 129 A stringset is First-Order definable relative to the class of finite
〈W, ⊳, ⊳+, Pσ〉σ∈Σ models (in FO(⊳+)) iff it is LTO.

If ε ∈ L(ϕ) then L(ϕ) = L(ϕ ∧ (∃x)[x ≈ x]) ∪ L((∀x)[x 6≈ x]).
Assume, then, ε 6∈ L(ϕ).
Assume, also, that ⊳ does not occur, as it is FO definable from ⊳+.
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5.23 Basis: Quantifier rank 0

ϕ L(ϕ) 2-expression
min ≈ min, max ≈ max, {w ∈ Σ∗ | |w| ≥ 1} ¬(⋊⋉)
min ≈ max, {w ∈ Σ∗ | |w| = 1}

W

σ,γ∈Σ[⋊σ
V

[¬(σγ)] ]

min ⊳+ min, max ⊳+ max, ∅ (⋊⋉) ∧ ¬(⋊⋉)
min ⊳+ max, {w ∈ Σ∗ | |w| ≥ 2}

W

σ,γ∈Σ[σγ]

Pσ(min), {σ} · Σ∗
⋊σ

Pσ(max) Σ∗ · {σ} σ⋉

5.24 Induction step

ϕ = (∃x)[ψ(x)], where qr(ϕ) is k + 1.

w |= (∃x)[ψ(x)] ⇔ w, [x 7→ p] |= ψ(x)

σ0 · · ·σp︸ ︷︷ ︸
wl

·σp+1 · · ·σn−1︸ ︷︷ ︸
wr

Let

Sϕ
def
= {〈χ

wl,〈p〉
k (x), χ

wr,〈 〉
k 〉 | p = maxwl and wl · wr, [x 7→ p] |= ψ(x)}

S′
ϕ

def
= {〈χ

wl,〈p〉
k (x)[maxwl/x], χ

wr,〈 〉
k 〉 | 〈χ

wl,〈p〉
k (x), χ

wr,〈 〉
k 〉 ∈ Sϕ}

L(ϕ) =
⋃

〈ϕl,ϕr〉∈S′
ϕ

[L(ϕl) · L(ϕr)]

Corollary 130 Every FO(⊳+) definable stringset is the union of a finite set of
concatenations of SL2 stringsets of the form:

{w ∈ Σ∗ | |w| ≥ 1}
{σ}
∅
{ε}

{w ∈ Σ∗ | |w| = 1} =
⋃

σ∈Σ[{σ}]
{w ∈ Σ∗ | |w| ≥ 2} = {w ∈ Σ∗ | |w| = 1} · {w ∈ Σ∗ | |w| ≥ 1}
{σ · w | w ∈ Σ∗} = {σ} · {w ∈ Σ∗ | |w| ≥ 1}
{w · σ | w ∈ Σ∗} = {w ∈ Σ∗ | |w| ≥ 1} · {σ}

Proof The construction of the proof captures Modϕ recursively as a finite
union of concatenations of pairs stringsets which may be, themselves, finite
unions of concatenations of pairs of stringsets, etc., with the base cases being
of the six forms given in the middle column. These can all be constructed using
concatenation an union from the first three forms given in the corollary. The
fourth form {ε} is needed only if ε ∈ L. If Since concatenation distributes over
union, this resolves into a finite union of concatenations of stringsets of the form
given. ⊣⊣⊣

Theorem 131 Emptiness of FO(⊳+) definable stringsets is decidable
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Proof Suppose L is FO(⊳+) definable. From Corollary 130 L is equal to a
finite union of concatenations of SL2 stringsets. Thus L will be empty iff every
one of these concatenations is empty. A concatenation of SL2 stringsets will
be empty iff any one of the individual stringsets is empty. Thus emptiness of
FO(⊳+) stringsets reduces to emptiness of SL2 stringsets which we know to be
decidable. ⊣⊣⊣

Since the SL2 sets are not arbitrary but are just one of the four forms given
in the corollary, we don’t actually need to use the emptiness algorithm for SL2

definitions. The concatenation will be empty iff one of the concatenated sets is
∅.

Theorem 132 Finiteness of FO(⊳+) definable stringsets is decidable.

Proof: exercise

Theorem 133 Universality of FO(⊳+) definable stringsets is decidable.

Proof: exercise

5.25 Cognitive interpretation of FO(⊳+)

• Any cognitive mechanism that can distinguish member strings from non-
members of an FO(⊳+) stringset must be sensitive, at least, to the sets of
length k blocks of events, for some fixed k, that occur in the presentation
of the string when it is factored into segments, up to some fixed number,
on the basis of those sets with distinct criteria applying to each segment..

• (More on the interpretation of FO(⊳+) shortly.)

• Any cognitive mechanism that is sensitive only to the sets of length k
blocks of events in the presentation of a string once it has been factored
in this way will be able to recognize only LTO stringsets.

5.26 FO(⊳+) is not learnable

Theorem 134 FO(⊳+) is not learnable in the limit from positive data.

Since LT ⊆ FO(⊳+).

Theorem 135 LTOk is not learnable in the limit from positive data for any
k ≥ 2.

Proof: (exercise)

5.27 Star-Free Sets

Definition 136 (Star-Free Set) The class of Star-Free Sets (SF) is the
smallest class of stringsets satisfying:

• ∅ ∈ SF, {ε} ∈ SF, and {σ} ∈ SF for each σ ∈ Σ.

• If L1, L2 ∈ SF then: L1 · L2 ∈ SF,
L1 ∪ L2 ∈ SF,

L1 ∈ SF.
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Theorem 137 (McNaughton and Papert) A set of strings is Locally Testable
with Order (LTO) iff it is Star-Free.

Corollary 138 (McNaughton and Papert) A set of strings is First-order
definable relative to the class of finite 〈W, ⊳, ⊳+, Pσ〉σ∈Σ models iff it is Star-Free.

SF ⇒ LTO:
Each base case is SL2. LTO is closed under union, concatenation and comple-
ment.
LTO ⇒ FO(⊳+): Theorem 129
FO(⊳+) ⇒ SF:
{w ∈ Σ∗ | |w| ≥ 1} = {ε}

5.28 Non-counting stringsets

Theorem 139 (McNaughton and Papert) A stringset L is Star-Free iff it
is non-counting, that is, iff there exists some n > 0 such that, for all strings
u, v, w over Σ,

if uvnw occurs in L

then uvn+iw, for all i ≥ 1, occurs in L as well.

Corollary 140 (McNaughton and Papert) A set of strings is First-Order
definable relative to the class of finite 〈W, ⊳, ⊳+, Pσ〉σ∈Σ models (in FO(⊳+)) iff
it is non-counting.

5.29 A non-counting stringset

my
︷ ︸︸ ︷
father’s

︷ ︸︸ ︷
father’s father resembledmy father ∈ L

my father’s︸ ︷︷ ︸ father’s︸ ︷︷ ︸ (father’s)︸ ︷︷ ︸
≥1

father resembledmy father ∈ L

5.30 A non-FO(⊳+) definable stringset

People left

People left by people left
People whompeople left left

People left by people left by people left
People whompeople whompeople left left left

...
n ‘people′s︷ ︸︸ ︷

People whompeople whom . . . people whompeople

n ‘left′s︷ ︸︸ ︷
left . . . left left

n︷ ︸︸ ︷
Peoplepeople people . . .

n︷ ︸︸ ︷
left left left

A more abstract (and formally tighter) example is the set of strings which are
of even length. For concreteness, we can consider those just over the singleton
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alphabet {a}. For any n this set will include the string an · an · ε but not
an · an+1 · ε. Hence, the set is not non-counting and, by Corollary 140 not
FO(⊳+) definable. Similarly, Even-B, the set of strings over {A,B} in which
the number of ‘B’s which occur is even is not FO(⊳+) definable.

5.31 FO(⊳) definable stringsets

〈D, ⊳, Pσ〉σ∈Σ

First-order Quantification (over positions in the strings)

FO(⊳)⊆FO(⊳+).

Theorem 141 The fixed and universal recognition problems for FO(⊳) defin-
able stringsets are decidable.

Theorem 142 Emptiness, finiteness and universality of FO(⊳) definable stringsets
are decidable.

All because FO(⊳)⊆FO(⊳+).

Example 143

(∃x0,0 . . . , x0,k−1, . . . , xt−1,0, . . . , xt−1,k−1)[
ϕf (x0,0, . . . , x0,k−1) ∧ · · · ∧ ϕf (xt−1,0, . . . , xt−1,k−1)∧
—f occurs at each of the [xi,0, . . . , xi,k−1]∧

0≤i6=j<t[xi,0 6≈ xj,0]

—Each occurrence starts at a different position
]

picks out the set of strings in which f occurs at least t times. The negation of
(143) picks out the set of strings in which f occurs fewer than t times. Putting
these together, we can build sentences that pick out the strings in which the
number of occurrences of a given k-factor f falls in any fixed range [n . . .m] or
any range greater than some fixed threshold [n . . .) or any finite combination of
these.

5.32 Locally Threshold Testable stringsets

Definition 144 (Locally Threshold Testable) A set L is Locally Thresh-
old Testable (LTT) iff there is some k and t such that, for all w, v ∈ Σ∗:

if for all f ∈ Fk(⋊ ·w ·⋉)∪Fk(⋊ ·v ·⋉) either |w|f = |v|f or both |w|f ≥ t
and |v|f ≥ t,

then w ∈ L ⇐⇒ v ∈ L.

Theorem 145 (Thomas) A set of strings is First-order definable relative to
the class of finite 〈D, ⊳, Pσ〉σ∈Σ models (in FO(⊳)) iff it is Locally Threshold
Testable.

Example 146 The stringset of Example 97 is LTT (as well as non-counting,
hence LTO) but not, as we saw, LT. To see that it is FO(⊳) definable, note that
one can restrict the strings to exactly one occurrence of ‘resembles’ with:

(∃x)[resembles(x) ∧ (∀y)[resembles(y) → y ≈ x]].
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Theorem 147 FO(⊳)(FO(⊳+).

Proof An example of a stringset that is LTO but not LTT is B-before-C, the
set of all strings over {a, b, c} in which b and c occur exactly once each with the
b occurring before the c:

{aibajcak | 0 ≤ i, j, k}.

As we just saw, restricting the strings to those in which b and c each occur
exactly once is within the capability of FO(⊳). It is the requirement that the b
precede the c that requires ⊳+. To see this, consider the pair of strings:

akbakcak and akcakbak

These have exactly the same number of occurrences of each of their k-factors but
the first is in the intended stringset while the second is not. Hence, regardless
of the value of the threshold, this stringset is not LTT. To see that it is LTO
note that it is the concatenation of three stringsets each of which are LT:

{aib | 0 ≤ i} · {ajc | 0 ≤ j} · {ak | 0 ≤ k}

⊣⊣⊣

(Exercise) Show that ⊳+ is not definable from ⊳.

5.33 Cognitive interpretation of FO(⊳)

• Any cognitive mechanism that can distinguish member strings from non-
members of an FO(⊳) stringset must be sensitive, at least, to the multi-
plicity of the length k blocks of events, for some fixed k, that occur in the
presentation of the string, distinguishing multiplicities only up to some
fixed threshold t.

• If the strings are presented as sequences of events in time, then this cor-
responds to being able count up to some fixed threshold.

• Any cognitive mechanism that is sensitive only to the multiplicity, up to
some fixed threshold, of the length k blocks of events in the presentation
of a string will be able to recognize only FO(⊳) stringsets.

5.34 Cognitive interpretation of FO(⊳+) (reprise)

• Any cognitive mechanism that can distinguish member strings from non-
members of an FO(⊳+) stringset, when the strings are presented as se-
quences of events in time, must be sensitive, at least, to the multiplicity of
events, counting up to some fixed threshold with the counters being reset
some fixed number of times based on those multiplicities.

5.35 FO(⊳) is not learnable

Theorem 148 FO(⊳) is not learnable
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Since it extends LT.

Theorem 149 LTTk,t is not learnable if either k or t is not fixed.

Since one can define La∗ and, using either two (i+1)-factors or i−1 occurrences
of a 2-factor, one can define La≤i for each i.

6 Monadic Second-Order Languages for Strings

6.1 MSO (Strings)

〈D, ⊳, ⊳+, Pσ〉σ∈Σ

Variables ranging over positions in the strings: X0 = {x0, x1, . . .}

Variables ranging over sets of positions in the strings: X1 = {X0, X1, . . .}

Atomic formulae: x ⊳ y, x ⊳+ y, x ≈ y, Pσ(x), X ≈ Y, X(x), x, y ∈
X0, X ∈ X1

First-order Quantification: (∃x)[ϕ], x ∈ X0

Second-order Quantification: (∃X)[ϕ], X ∈ X1

6.2 Semantics of MSO languages

Definition 150 (MSO Assignments) An MSO assignment for a model A
is a partial function mapping variables in X0 to the domain of A and variables
in X1 to subsets of the domain of A.
If s is an assignment for A and S is a subset of the the domain of A then then
s[X 7→ S] is the assignment that agrees with s on all FO and MSO variables
except X to which it assigns S:

s[X 7→ S](Y )
def
=

{
S if Y = X,
s(Y ) otherwise.

Definition 151 (Satisfaction) A, s |= ϕ iff one of the following holds:

• ϕ = ‘x ⊳ y’ , s(x) and s(y) are both defined and s(y) = s(x) + 1,

• ϕ = ‘x ⊳+ y’ , s(x) and s(y) are both defined and s(x) < s(y),

• ϕ = ‘x ≈ y’ , s(x) and s(y) are both defined and s(x) = s(y),

• ϕ = ‘Pσ(x)’ , s(x) is defined and s(x) ∈ Pσ,

• ϕ = ‘X ≈ Y ’ , s(X) and s(Y ) are both defined and s(X) = s(Y ),

• ϕ = ‘X(x)’ , s(X) and s(x) are both defined and s(x) ∈ s(X),

• ϕ = ‘(ψ1 ∨ ψ2)’ and either A, s |= ψ1 or A, s |= ψ2,

• ϕ = ‘(¬ψ)’ and A, s 6|= ψ,

• ϕ = ‘(∃x)[ψ]’ and, for some a in the domain of A, A, s[x 7→ a] |= ψ, or

• ϕ = ‘(∃X)[ψ]’ and, for some subset S of the domain of A, A, s[X 7→ S] |= ψ.
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6.3 Recognition for MSO definable stringsets

Theorem 152 The fixed and universal recognition problems for MSO definable
sets is decidable.

Recognition = satisfaction. Satisfaction is decidable.

6.4 B-before-C is MSO definable
(∃X0)[ (∀x)[X0(x) ↔ ((∀y)[¬y ⊳ x] ∨ (∃y)[X0(y) ∧ A(y) ∧ y ⊳ x]) ] ] ∧

—X0 contains the minimum point and
everything up to the first non-‘a’ which follows it

(∃X1)[ (∃x)[B(x) ∧ (∀y)[B(y) → y ≈ x] ∧ X1(x) ∧ (∀y)[y ⊳ x → ¬X1(y)] ]
—There is exactly one ‘b’ and it is the minimum point in X1

(∃x)[C(x) ∧ (∀y)[C(y) → y ≈ x] ∧ X1(x) ∧ (∀y)[x ⊳ y → ¬X1(y)] ]
—There is exactly one ‘c’ and it is the maximum point in X1

(∀x)[ X1(x) ↔ ( B(x) ∨ C(x)∨
—X1 contains the ‘b’ and the ‘c’. . .
(∃y)[X1(y) ∧ (A(y) ∨ B(y)) ∧ y ⊳ x] ∨
—. . . and the ‘a’s following the ‘b’. . .
(∃y)[X1(y) ∧ (A(y) ∨ C(y)) ∧ x ⊳ y]
—. . . and the ‘a’s preceding the ‘c’

] ∧
(∃X2)[ (∀x)[X0(x) ↔ ((∀y)[¬x ⊳ y] ∨ (∃y)[X0(y) ∧ A(y) ∧ x ⊳ y]) ] ]

—X2 contains the maximum point and
everything up to the first non-‘a’ which precedes it)

(Exercise) Show that Even-B is MSO definable.

6.5 Satisfying assignments for X0, X1 and X2

X0

b

X0

X1

a

X1 X1

a

X1

X2

ca

X0

a

X2

a

6.6 Generating sets of satisfying assignments

a

1 11
a

6 4
a

4

b

31
c

63

1 3
b

1
a

2
c

2
a

3

2
c

6 6

2
a

2

a

46

a

11

4
a

4

6
a

4

b

3

3
c

23
a a

22 2 6

c

4

4

a

6

6

2

3

⋊

⋊

⋊

⋉

⋉

⋉

⋉

⋉

∅ = 0(= ⋊), {X0} = 1, {X1} = 2, {X0, X1} = 3,
{X2} = 4, {X0, X2} = 5, {X1, X2} = 6, {X0, X1, X2} = 7

6.7 Finite-state automata

Definition 153 (Nondeterministic Finite-state Automaton) A Nonde-
terministic Finite-state Automaton (NFA) is a 5-tuple 〈Q,Σ, q0, δ, F 〉 where:
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• Q is a finite set of states,

• Σ is the input alphabet,

• q0 ∈ Q is the designated initial state,

• δ ⊆ Q× Σ ×Q is the transition relation and

• F ⊆ Q is the set of accepting states (or “final” states).

6.8

a

Y N

Internal State

a a b a b b c c c b a

6.9 Recognizable stringsets

Definition 154 A computation1 of a FSA M = 〈QM,ΣM, qM0 , δM, FM〉
on a string w ∈ Σ∗ from a state q ∈ QM is a sequence of symbol/state pairs:
C = 〈σ1, q1〉〈σ2, q2〉 · · · 〈σn, qn〉, in which:

• 〈q, σ1, q1〉 ∈ δM and

• 〈qi, σi+1, qi+1〉 ∈ δM for all i < n,

• w = πℓ(C)

If, in addition, q = qM0 and qn ∈ FM, then the computation is accepting.

Definition 155 A string w ∈ Σ∗ is accepted by an FSA M = 〈QM,ΣM, qM0 , δM, FM〉
iff there is a accepting computation of M on w.

Definition 156 The language recognized by an FSA M = 〈QM,ΣM, qM0 , δM, FM〉
is the set of strings in Σ∗ which are accepted by M.

6.10 Automata and tiling systems

63
b

2 6
a

23
c

6 ∈ F〈q0, b, 3〉 〈3, a, 2〉 〈2, c, 6〉

⋊ ⋉

1It is more common to define computations as a sequence of Instantaneous Descrip-

tions which are pairs of a string and a state, with the string representing the portion of w

which remains to be scanned. This formally equivalent to our notion of computation but less
convenient for our purposes.
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Computations of an FSA are just strings in (Σ×Q)∗. The right projection of a
computation is a run, the sequence of states the automaton visits in processing
w (the left projection). Note that the transition between 〈σi, qi〉 and 〈σi+1, qi+1〉
depends only on qi, σi+1 and qi+1. Let LM be the set of computations of M. LM

satisfies 2-Suffix Substitution Closure: wM ·〈q, σ〉·yM ∈ LM and vM ·〈q, σ〉·zM
implies wM · 〈q, σ〉 · zM ∈ LM. Consequently, the set of computations of an
FSA is SL2.
We can capture the set of computations of an FSA M = 〈QM,ΣM, qM0 , δM, FM〉
with an SL2-style generator by interpreting δM as a set of tiles, adding tiles of
the form 〈⋊, σ, q〉 for each triple of the form 〈q0, σ, q〉 and tiles of the form 〈q,⋉〉
for each q ∈ F . Then C is an accepting computation of M iff ⋊ · C · ⋉ can be
constructed using the tiles.

Theorem 157 (Chomsky Schützenberger) A set of strings is recognizable
iff it is a projection of a Strictly 2-Local set.

6.11 Deterministic Finite-state Automata

Definition 158 (Deterministic Finite-state Automaton) A Determinis-
tic Finite-state Automaton (DFA) is an NFA in which the transition relation
functional in the sense that for each qi ∈ Q and σ ∈ Σ there is a exactly one
qj ∈ Q such that 〈qi, σ, qj〉 ∈ δ.

Theorem 159 Every FSA is equivalent, in the sense of recognizing the same
language, to a DFA.

6.12 Powerset construction

Suppose M = 〈QM,ΣM, qM0 , δM, FM〉. Let M̂
def
= 〈Q̂,ΣM, q̂0, δ̂, F̂ 〉 where:

• Q̂
def
= P(Q),

• q̂0
def
= {q0},

• δ̂
def
= {qj | q̂i ∈ Q̂, qi ∈ q̂i, 〈qi, σ, qj〉 ∈ δM},

• F̂
def
= {q̂ ∈ Q̂ | q̂ ∩ FM 6= ∅}.

Claim 160

1. M̂ is deterministic.

2. Let

δ∗M(q, w)
def
=






{q} if w = ε,
{qi | There is a computation of M on w

from q ending in state qi }
otherwise.

and

δ̂∗(q̂, w)
def
=






q̂ if w = ε,

q̂i such that the computation of M̂ on w
from q̂ ends in state q̂i

otherwise.

Then δ̂∗(q̂0, w) = δ∗M(q0, w).
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6.13 Closure properties

Lemma 161 The class of recognizable stringsets is closed under Boolean oper-
ations.

Construction for union and intersection:
Let Q̂ = Q1 ×Q2.
Choose F̂ such that either (union) or both (intersection) components are in F 1,
F 2.
(Exercise) Give a construction for converting a DFA for a stringset L into one
for L. Does this work for non-deterministic FSAs?

6.14 Projection and cylindrification

Projection: Σ1 → Σ2, typically many-to-one.
Cylindrification: inverse projection

Lemma 162 The class of recognizable stringsets is closed under projection and
cylindrification.

Apply map to tuples in δ.
E.g.:
If a, b 7→ c then 〈qi, a, qj〉, 〈qi, b.qj〉 7→ 〈qi, c, qj〉,
If c 7→ a, b then 〈qi, c, qj〉 7→ 〈qi, a, qj〉, 〈qi, b.qj〉.

6.15 Character of recognizable sets

Definition 163 (Nerode Equivalence) Two strings w and v are Nerode
Equivalent with respect to a stringset L over Σ (denoted w ≡L v) iff for all
strings u over Σ, wu ∈ L⇔ vu ∈ L.

Theorem 164 (Myhill-Nerode) : A stringset L is recognizable iff ≡L parti-
tions the set of all strings over Σ into finitely many equivalence classes.

Proof (⇒)
L recognizable ⇒ L = L(M) for some FSA M. Wlog, by Theorem 159, M is
deterministic. Let

w ≡M v ⇔ δ∗(qM0 , w) = δ∗(qM0 , v).

Then w ≡M refines w ≡L v, i.e., w ≡M v ⇒ w ≡L v.
Thus {[w]M | w ∈ Σ∗} finite implies {[w]L | w ∈ Σ∗} finite.

6.16 Proof of MyHill-Nerode (⇐)

Suppose ≡L partitions Σ∗ into finitely many equivalence classes. Let ML =
〈Q,Σ, q0, δ, F 〉, where:

Q = Σ∗/≡L
(= {[w]L | w ∈ Σ∗})

δ = {〈[w]L, σ, [wσ]L〉 | w ∈ Σ∗, σ ∈ Σ}
q0 = [ε]L
F = {[w]L | w ∈ L}

(Exercise) Show that w ≡L v ⇒ wσ ≡L vσ for all w, v ∈ Σ∗ and σ ∈ Σ.



ESSLLI’07—Formal Description of Syntax 52

6.17 MSO Quantifier Rank

Definition 165 (MSO Quantifier Rank)

qr(ϕ)
def
=






0 if ϕ = ‘σ(~x)’ or ϕ = ‘x ≈ y’,
qr(ψ) if ϕ = ‘(¬ψ)’,
max(qr(ψ1), qr(ψ2)) if ϕ = ‘(ψ1 ∨ ψ2)’,
qr(ψ) + 1 if ϕ = ‘(∃x)[ψ]’,
qr(ψ) + 1 if ϕ = ‘(∃X)[ψ]’.

6.18 MSO types

Definition 166 ((r,m, n)-types) Suppose A is a model with domain A, and
r ≥ 0.
Let 〈A0, . . . , Am−1〉 be an m-tuple of subsets of A and 〈a0, . . . , an−1〉 an n-tuple
of points from A. The (r,m, n)-type of (〈A0, . . . , Am−1〉, 〈a0, . . . , an−1〉) in A
is:

tpr(A, 〈A0, . . . , Am−1〉, 〈a0, . . . , an−1〉)
def
=

{ ϕ(X0, . . . , Xm−1, x0, . . . , xn−1) |
qr(ϕ(X0, . . . , Xm−1, x0, . . . , xn−1)) = r and
A, [Xi 7→ Ai, xi 7→ ai] |= ϕ(X0, . . . , Xm−1, x0, . . . , xn−1) }.

The set of (r,m, n)-types realized in a model A is the set of (r,m, n)-types
of the n-tuples of its domain:

Sm,n
r (A)

def
= {tpr(A, ~A,~a) | ~A ∈ P(A)

m
,~a ∈ An}.

S0,0
r (A) = {tpr(A, 〈 〉, 〈 〉)}, Th2

r(A)
def
= tp2

r(A)
def
= tpr(A, 〈 〉, 〈 〉).

A ≡2,r B
def
⇐⇒ tp2

r(A) = tp2
r(B).

Lemma 167 The number of logically distinct formulae of quantifier rank r with
m free MSO variables and n free FO variables in any relational monadic Second-
Order language L over a finite signature is finitely bounded.

Corollary 168 The number of distinct (r,m, n)-types realizable in any class of
relational models is finite.

Corollary 169 For every model A, every m-tuple ~A of subsets of the domain of
A, m ≥ 0, every n-tuple ~a of points in the domain of A, n ≥ 0, and every r ≥ 0,

there is a single MSO formula χA, ~A,~a
r ( ~X, ~x) which characterizes tpr(A, ~A,~a):

B, [ ~X 7→ ~B, ~x 7→ ~b] |= χA, ~A,~a
r ( ~X, ~x) iff tpr(B, ~B,

~b) = tpr(A, ~A,~a)

Moreover χA, ~A,~a
r ( ~X, ~x) ∈ tpr(A, ~A,~a)

Theorem 170 A property of models P , a subset of the set of all models over a
relational signature Σ, is definable in L2(Σ) iff there is some r ≥ 0 such that,
for all Σ-models A and B

tp2
r(A) = tp2

r(B) ⇒ A ∈ P ⇔ B ∈ P.

Corollary 171

tp2
r(w1) = tp2

r(w2) ⇒ w1 ∈ L⇔ w2 ∈ L.
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6.19 Concatenation and MSO types

Lemma 172

If tpr(A, ~A,~a) = tpr(B, ~B,~b) and tpr(C, ~C,~c) = tpr(D, ~D, ~d)

then tpr(A · C, ~A · ~C,~a · ~c) = tpr(B · D, ~B · ~D,~b · ~d).

Corollary 173

If A ≡2,r B and C ≡2,r D then A · C ≡2,r B · D.

6.20 Recognizability characterizes MSO-definability

Theorem 174 (Medvedev, Büchi, Elgot) A set of strings is MSO-definable
relative to the class of finite 〈W, ⊳, ⊳+, Pσ〉σ∈Σ models iff it is recognizable.

Proof(Only if) Suppose that L is MSO definable. Then there is some MSO
sentence ϕ such that, for all strings w over Σ, w ∈ L iff w |= ϕ. Let r = qr(ϕ).
By Corollary 173, for all w, v, u, if w ≡2,r v then w · u ≡2,r v · u. Thus, if
w ≡2,r v then

w · u ∈ L⇔ w · u |= ϕ⇔ v · u |= ϕ⇔ v · u ∈ L.

Hence, equivalence with respect to ≡2,r implies Nerode Equivalence; the Nerode
Equivalence classes will be unions of the ≡2,r classes. By Corollary 168, there
are but finitely many (r, 0, 0)-types, hence finitely many of these equivalence
classes and finitely many Nerode Equivalence classes. It follows, by the Myhill-
Nerode Theorem, that L is recognizable. ⊣⊣⊣

Proof(If) Suppose L = L(M) for some FSA M.
Let LM ⊂ (Q× Σ)+ be the set of accepting computations of M. As the set of
all computations of M is SL and this is just the subset of that set which end in
accepting states, LM is SL and, hence, FO definable.
Let ϕ′

M be a variation of the First-Order sentence defining LM in which instead
of using Q× Σ as the alphabet, we use Q ∪ Σ, translating each atomic formula
〈q, σ〉(x) to (q(x) ∧ σ(x)).
Treating Q as MSO variables:

ϕA
def
= (∃Q)[ϕ′

A(Q)]. (175)

⊣⊣⊣

Corollary 176 A stringset L over and alphabet Σ is MSO definable over 〈W, ⊳, ⊳+, Pσ〉σ∈Σ

iff ≡L partitions the set of all strings over Σ into finitely many equivalence
classes.

Corollary 177 Every MSO sentence over 〈W, ⊳, ⊳+, Pσ〉σ∈Σ is logically equiv-
alent to an MSO sentence of the form:

(∃X1, . . . , Xn−1)[ϕ(X1, . . . , Xn−1)] (178)

where ϕ(X1, . . . , Xn−1) uses only First-Order quantification.
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6.21 Definability ⇒ Recognizability

• Treat Σ as set variables. Assume no variables reused.

• Reduce to x ⊳ y, x ≈ y, X ≈ Y , X(y), ∃x and ∃X .

• Reduce to: only set variables, ∃X , X ⊆ Y and X ⊳ Y where:

Empty(X) ≡ (∀Y )[Y ⊆ X → X ⊆ Y ]
Singleton(X) ≡ (∀Y )[Y ⊆ X → (Empty(Y ) ∨X ⊆ Y )]

x ⊳ y ≡ Singleton(X) ∧ Singleton(Y ) ∧X ⊳ Y

(Exercise) Show how to reduce x ≈ y, X ≈ Y and X(y) to X ⊆ Y andX ⊳ Y

6.22 Accepting Atomic Formulae

E.g., assignments satisfying X ⊳ Y are in L(M) for M where:

QM def
= {0, 1, 2, 3}

ΣM def
= P({X,Y })

qM0
def
= ∅

δM
def
= { 〈0, ∅, 0〉, 〈0, {X}, 1〉, 〈1, {Y }, 2〉, 〈2, ∅, 2〉

〈q, σ, 3〉 for all other q and σ }

FM def
= {2}.

∅ ∅ {X} {Y }
⋊ 0 0 1 2 ⋉

6.23 Extending to Arbitrary Formulae

• ∨, ∧ — Union, intersection

• ∃ — projection
(∃Y )[ϕ] : {X}, {X,Y } 7→ {X}

∅ ∅ {X} ∅
⋊ 0 0 1 2 ⋉

– introduces non-determinism

• ¬ — Determinization and complement

– potential exponential blow-up

6.24 Decision problems for MSO

Lemma 179 Emptiness of MSO-definable stringsets is decidable.

Lemma 180 Universality of MSO-definable stringsets is decidable.

Lemma 181 Finiteness of MSO-definable stringsets is decidable.
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6.25 Cognitive interpretation of MSO

• Any cognitive mechanism that can distinguish member strings from non-
members of an MSO-definable stringset must be capable of classifying the
events in the input into a finite set of abstract categories and are sensitive
to the sequence of those categories.

• Subsumes any recognition mechanism in which the amount of information
inferred or retained is limited by a fixed finite bound.

• Any cognitive mechanism that has a fixed finite bound on the amount of
information inferred or retained in processing sequences of events will be
able to recognize only MSO-definable stringsets.


