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In this paper we show how to define certain sub
regular classes of languages which are identifiabl
in the limit from positive data (ILPD) by efficient,

well-behaved learners with a lattice-structured hy
pothesis space (Heinz et al., 2012).

Learning Subregular Classes of Languages with Factored Detministic

Automata

Abstract

This paper shows how factored finite-

state representations of subregular lan-
guage classes are identifiable in the limit
from positive data by learners which are

polytime iterative and optimal. These rep-

resentations are motivated in two ways.
First, the size of this representation for

a given regular language can be expo-
nentially smaller than the size of the

minimal deterministic acceptor recogniz-

ing the language. Second, these rep-
resentations (including the exponentially

smaller ones) describe actual formal lan-
guages which successfully model natural
language phenomenon, notably in the sub-
field of phonology.

Introduction

It is shown

2 Preliminaries

For any functionf and element in the domain of
f, we write f(a) | if f(a) is defined, andf(a)t
otherwise.X* andX* denote all sequences of any
finite length, and of length, over a finite alphabet
3. The empty string is denotedl A languagel

is a subset of*.

For all 2, y belonging to a partially-ordered set
(5,<), if x < zandy < z thenz is anupper
boundof z andy. For allz, y € S, theleastupper
bound (lub)x Ly = 2z iff x < 2,y < 2, and for all
2" which upper bound: andy, it is the case that
z < 2. Anupper semi-latticés a partially ordered
set(S, <) such that every subset sfhas a lub. If
S is finite, this is equivalent to the existence of
zUyforallz,y € S.

A deterministic finite-state automaton (DFA) is
atuple(Q@, %, qo, F,9). The states of the DFA are
Q); the input alphabet iX; the initial state isg;

the final states aré”; andd : Q x ¥ — Q is
e transitionfunction The transition function’s
domain is extended tQ x >* in the usual way.

The language of a DFA is writteh(.A) and equals
{w € ¥* | §(qo,w) € F}. A DFA is trim iff

that every finitesetof DFAs defines such an ILPD
class. In j[hIS case, gac_h DFA can be V|ewed_ a |. The empty DFA isd, = (2, %, go, 2. 2).
onefactor in the description of every language in

the class. This factoring of language classes into The DFA product otd; = (Q1, %, qo1, F1,01)
multiple DFA can provide a&ompact canonical and Az = (@2, %, o2, F2, 62) Is

representation of the grammars &rerylanguage

in the class. Additionally, many subregular classes
of languages can be learned by the above method
includ?ng ?he Locallyk-TestabIe),/Strictlyq-LocaI, whereQ = Q1% Qa, av = (qo1, an2), F = Fi <P
Piecewisek-Testable, and Strictlyk-Piecewise
languages (McNaughton and Papert, 1971; Rogers
and Pullum, 2011; Rogers et al., 2010). From a
linguistic (and cognitive) perspective, these sub-
regular classes are interesting becuase they appear
to be sufficient for modeling phonotactic patterns

in human language (Heinz, 2010; Heinz et al.,The DFA product of two DFA is also a DFA. If the
2011; Rogers et al., to appear). two DFA are trim, then their product is as well.

Vq € Q)[Fw,v € ¥* | 6(q0,w) = g A\ d(q,v) €

®(A17A2) == (Q,E,QZQ,F, 5)

(Vg € Q)(Vo € E)[
5((611,412)a0) = (91, 95)
& 01(q1,0) = ¢ N o2(q2,0) = ¢5 |-



The product operation is associative and comwritten A’ C A, if and only if Q' C Q, X C Y,
mutative (up to isomorphism), and so it can be apg{, = qo, I’ C F, &' C 6. The sub-DFA relation
plied to a finite setS of DFA, in which case we is extended to grammars (sequences of DFA). Let
write ® S = ® 45 A (leting @{A} = A). In A = (A - A,) and A' = (A}~ A7), Then
trlis paper, grammars are fingequenceef DFAs A’ C A <= (V0 <i < n)[A] C Aj].

A = (A1~ An) and we also use th§) nota-  Clearly, if A’ C A thenL(A') C L(A).
tion for the product of a finite sequence of DFAs:  Eyery grammarA determines a class of lan-

L(A) = L(Q@ 4czA)- Sequences are used in-gyages: those recognized by a sub-grammaf.of

-,

stead of sets in order to match factors in two gramoyr interest is not iri.(A), itself. Indeed, this will
mars. LetDF.A denote the collection of finite se- generally ben*. Rather, we our interest is in iden-

quences of DFAs. tifying languages relative to the class of languages

Theorem 1 is well-known. that are recognizable by sub-grammarsof
Theorem 1 Consider a finite set of of DFA. 5 ¢ w0 5 LetG(A) £ (5| BT AY, the class
ThenZ (@ es A) = MNaes L(A). of grammars that are sub-grammars.4f

An important consequence of Theorem 1 is that Letﬁ(,éf) d:ef{L(g) | BrC f(} the class of lan-
some languages are ex'ponentlally more COMg ages recognized by sub-grammarséfof

pactly represented by their factors. The grammar A ¢jass of languages is a factorable-DFA class
A= {A---An} hasy ;o card(Qi) states, g itis £(4) for somed.

whereas the trimme@) G can have as many as

The setG(A) is necessarily finite, sincel is, so
g;tﬁésﬁn card(@i) € O(maxi<in(card(@:))") every classC(.A) is trivially ILPD by a learning

algorithm that systematically rules out grammars
2.1 Identification in the limit that are incompatible with the text, but this naive

A positive textT for a languagel is a total algorithm is prohibitivgly inefficient. Our goal is

function T : N — L U {#} (# is a ‘pause’) tp estapllsh that th_e efficient general learning a!go-
such thatvw € L, 3n € N such thatl'(n) = rithm given by Heinz et al. (2012) can be applied
w. Let T[i] denote the initial finite sequence to every class of factorable-DFA languages, and

T(0),T(1)...T(i — 1). Let SEQ denote the set that this class includes many of the well-known
of all finite initial portions of all positive texts sub-regular language classes as well as classes that

for all possible languages. Thmntentof an el- are, in a particular sense, mixtures of these.
ementT[i] of SEQ iscontent(T[i]) = {w €
¥ 1 (37 <i-1[T(j) = w|}. In this paper,
learning algorithms are programs: : SEQ —  This section describes the Strictly 2-Piecewise lan-
DFA. A learner¢ identifies in the limit from guages, which motivates the factorization which
positive textsa collection of languageg if and is at the heart of this analysis Strictly Piecewise
only if for all L € L, for all positive textsT  (SP) languages are characterized in Rogers et al.
for L, there exists am < N such that for all (2010) and are a special subclass of the Piece-
m > n, ¢(T[m]) = ¢(T[n]) = G andL(G) = L  wise Testable languages (Simon, 1975). In fact
(see Gold (1967; Jain et al. (1999)). A class of lan-SP are exactly those languages closed under sub-
guages is ILPD iff it is identifiable in the limit by Ssequence.

4 A motivating example

such a learner. Every SP language is the intersection of a finite
set of complements of principle shuffle ideals:
3 Classes of factorable-DFA languages det
e — ..
In this section, classes of factorable-DFA lan- L €SP L= ﬂ [Sl(w)], S finite

guages are introduced. The notion of sub-DFA is wes

central to this concept. Pictorially, a sub-DFA iswhere
obtained from a DFA by removing zero or more def

states, transitions, and/or revoking the final status>(w) = {v €% *| w =0y --opand
of zero or more final states. Fuo, -y ok € E)v = v - 01 v o vk}

Definition 1 For any DFAA = (Q, X, qo, F,d), Sow € Sl(w) iff w occurs as a subsequencevof
aDFAA = (Q',Y,q), F',¢) issub-DFAof 4, andL € SP iff there is a finite set of strings for



&6 b BB

Figure 1. The sequence of DFA = (Aq, Ap, Ac), whereX = {a,b,c} and each4d, accepts:* and
whose states distinguish whethehas yet occurred

Figure 2: The product, x Ay x A..



which L includes all and only those strings that do5 Learning factorable classes of

not include those strings as subsequences.

languages

A language is SPiff it is generated by a set of |n this section, classes of factorable-DFA lan-
strings each of which is of length less than or equaluages are shown to be analyzable as finite lattice

to k. Clearly, every SP language is Sfor some
kand SP= {J; <;cn[SP)-

If w € ¥* and|w| = k, thenSl(w) = L(Ay)
for a DFA Az with no more thank states. For
example, ift = 2 andX = {a,b,c} and, hence,
w € {a,b,c}?, then the minimal trim DFA recog-
nizing Sl(w) will be a sub-DFA (in which one of

the transitions from the, state has been removed) A1 U A2 =

of one of the three DFA of Figure 1.

Figure 1 showsd = (A,, 4, A.), whereX =
{a,b,c} and eachA, is a DFA acceptingZ*
whose states distinguish whetherhas yet oc-
curred. Figure 2 show® A.

Note that every SPlanguage ovefa,b,c} is

spaces. By Theorem 6 of Heinz et al. (2012), ev-
ery such class of languages can be identified in the
limit from positive texts.

Definition 3 (Joins) Let A = (Q,X%, q, F,J),
Ay = (Q1,%,q0, F1,61), Az =
(Q2,%,qo, F»,d2) such that 4, T A and
A, C A The join of A; and Ay is
(Q1UQ2,%,qo, F1 U F3, 01 Udy).

Similarly, for all A = (A;---A,), B
(By-+-By,), andCy = (Cy---C,) such thatB
AandC C A, thejoin of andB andCis BLIC
<81|_|Cl -B, UC, >

Note that the join of two sub-DFA oft is also a
sub-DFA of A. SinceG(.A) is finite, binary join
suffices to define join of any set of sub-DFA of a

I

L(B) for some5 C A. The class of grammars given DFA (as recursive binary joins). Lg{[S]

of G(A) recognize a slight extension of $Bver

{a,b,c} (which includes 1-Reverse Definite lan-

guages as well).

be the join of the set of sub-DFAS.

Lemmal The set of sub-DFA of a DFA, or-
dered byC, ({BLC A},C), is an upper semi-

Observe that 6 states are required to descAbe |attice with the least upper bound of a set &f

but 8 states are required to descr@.A Let A,

sub-DFA ofA being their join.

be the sequence of DFA with one DFA for each similarly the set of sub-grammars of a grammar

letter in3, as in Figure 1. Agard(X) increases
the number of states ofly, is 2 x card(X) but

the number of states i® As, is ocard(x)  The

number of states in the product, in this case, is e

ponential in the number of its factors.

A, ordered again bz, ({B C A}, C), is an upper
semi-lattice with tbe least upper bound of a set of
sub-grammars ofd being their join.

"This follows from the fact thaf); U Q- (similarly

Fy U F, anddy U 6s) is the lub ofQ; and@Q- (etc.)

The Strictly 2-Piecewise languages are cur4n the lattice of sets ordered by subset.
rently the strongest computational characteriza-

tion! of long-distance phonotactic patterns in hu-
The size of théDefinition 4 For a DFA A, thepathof a wordw =

man languages (Heinz, 2010).
phonemic inventorigsin the world’'s languages

ranges from 11 to 140 (Maddieson, 1984). En-((qo,00), (q1,01)," -
glish has about 40, depending on the dialect. Thév0 < i < n)[gi+1 = (gi, 03)] if (qo,

fact that there are aboun!! neurons in human

5.1 Paths and Chisels

-0, € X¥in Als the sequence(A, w) =
(Qna Un)a (QnJrla )\)> where
w)l; oth-
erwisen(A,w) 1. The set of states traversed in

0'00'1 ..

brains (Williams and Herrup, 1988), which is a path7 will be denoted@, the transitions tra-
about 235 helps motivate interest in the more versedd,, and ifw € L(A) then the set of final

compact, parallel representation given Jé& as

states in the pathr is F;; = {¢,+1} and the empty

opposed to the singular representation of the DFAet otherwise.

® As.

Next, for any DFA A, we define thechisel
of a word, which etches out a path withi iff
w € L(A) and returns the sub-DFA exactly en-

See Heinz et al. (2011) for competing characterizations.compassing that path.

>The mental representations of speech sounds are call
phonemes, and the phonemic inventory is the set of these re

resentations (Hayes, 2009).

Jefinition 5 For any DFAA = (Q, %, qo, F, 0)
and all w € X*. The chisel of w



given A is the sub-DFA C4(w) = thelanguagesof a grammarv in a lattice space
(QT((.A,ZU)? >, qo, Fw(A,w)7 57T(A,w)) if w e L(.A), (M f) with {U) IS ’ f(w) C 1)}. Thlideflnltlon

-,

otherwise Cy(w) = Ag. Consider coincides with ours: for any element’ of C(.A)
any A = (A4;---A,) and any word (note A’ C A), a wordw belongs toL(4’) if and
w € ¥*. The chisel of w given A is only if Cz(w) is a sub-DFA ofA". Theclass of
C z(w) = (Cay (W) - Cyy (w)). languagesof a LS is the collection of languages
Observe that for all words and all A, C.4(w) C obtained by every element in _the lattice. For ev-
Aand thatC 4 (w) is trim. ery LS(C(A),C ;), we now define a learnef ac-

Using the join, the domain of the chisel is ex- cOrding to the construction in Heinz et al. (2012):
tended to sets of words? () = | |,cs C s(w). 7L € SEQ, &(T) = Uecontens(r) Ca(w):
Note that{C ;(w) | w € $*} is finite, since Let [’(C(,AT),C;) denote the class of languages
{g| BC j} is. associated with the LS in Theorem 3. Accord-
Theorem 2 For any grammar/f et C(ff) ing to Heinz et al. (2012, Theorem 6), the learner

R R, — ¢ identifies £, 4 ¢, 4) In the limit from pos-
{C4(9) | § € X}, Then(C(A),C) is an up- itive data. Furthermores is polytime itera-

perﬁer_m_-lattlce with the lub of two elements g'Ve”tive, i.e can compute the next hypothesis in poly-
by the joinL. time from the previous hypothesis alone, and

Proof This follows immediately from the finite- OPtimal in the sense that no other learner con-

ness of{C y(w) | w € ©*} and Lemma 1. O verges more quickly on Ianguagesmgc(ﬁ)pg).
In addition, this learner igylobally-consistent

) locally-conservativestrongly-monotoneandpru-
Lemma 2 For all A = (Q, %, qo, F,9), there is  gent Formal definitions of these terms are given

afinite setS C %" such that |,cs Ca(w) = A- jn Heinz et al. (2012) and can also be found else-
Similarly, forall A = (A; - -- A,), there is afinite  where, e.g. (Jain et al., 1999).
setS C ¥* such thatC' #(5) = G.

Proof For the first statement, lef be the set of 6 Complexity considerations

uov Where, for eacly € @ and for eacty € ¥,  The space of sub-grammars of a given sequence of
6(qo,u) {= q andé(d(q,0),v) L€ F such that DFAsis necessarily finite and, thus, identifiable in
uov has minimal length. By constructiorfi is  the limit from positive data by a naive learner that
finite. Furthermore, for every state and everysimply enumerates the space of grammars. The
transition in.A, there is a word inS whose path |attice learning algorithm has better efficiency be-
touches that state and transition. By definition ofcause it works bottom-up, extending the grammar
L it follows that C4(S) = A. For proof of the  minimally, at each step, with the chisel of the cur-
second statement,4; in A, constructS; as stated rent string of the text. The lattice learner never
and take their union. O explores any part of the space of grammars that
is not a sub-grammar of the correct one and, as it
Heinz et al. (2012) define lattice spaces. For amever moves down in the lattice, it will skip much
upper semi-latticé” and a functionf : ¥* — V' of the space of grammars that are sub-grammars of
such thatf andL! are (total) computabldV, f)is  the correct one. The space it explores will be mini-
called aLattice Space (LSiff, for eachv € V,  mal, given the text it is running on. Generalization
there exists a finitd C range(f)with| |D =wv. s a result of the fact that in extending the gram-
Theorem 3 For all grammarsA = (A, --- A,), Mmarforastring the learner adds its entire Nerode
(C(A), C ;) is a lattice space. equwalc_ence class to the Iapguage. _
~ ~ The time complexity of either learning or recog-
Proof For all A’ € C(A), by Lemma 2, tpere is a nition with the factored automata may actually be
finite S C ¥* such that | .o C 7(w) = A. O  somewhat worse than the complexity of doing so
with its product. Computing the chisel of a string
For Heinz et al. (2012), elements of the lat-w in the product machine of Figure 2 &(|w|),
tice are grammars. Likewise, here, each grammawhile in the factored machine of Figure 1 one must
A= (A --- A,) defines a lattice whose elementscompute the chisel in each factor and its complex-
are its sub-grammars. Heinz et al. (2012) associatity is, thus, O (|w| card(X)*~1). But® andk are



fixed for a given factorization, so this works out to which there is no complexity advantage in factor-
be a constant factor. ing the DFA. This is because every Slanguage
Where the factorization makes a substantial difis recognized by a DFA that is a Myhill graph:
ference is in the number of features that mustvith a state for each string ai<* (i.e., of length
be learned. In the factored grammar of theless thank). Such a graph ha®(card(X)*~1)
example, the total number of states plus edgestates, asymptotically the same as the number of
is ©(kcard(X)*~1), while in its product it is states in the factored grammar, which is actually
e (2Card(™)*")y This represents an exponential marginally worse.
improvement in the space complexity of the fac- Therefore, factored SLgrammars are not, in
tored grammar. themselves, interesting. But they are interesting as
Every DFA can be factored in many ways, butfactors of other grammars. LESL + SP); (resp.
the factorizations do not, necessarily provide ar(LT + SP);;, (SL + PT) ;) be the class of lan-
asymptotically significant improvement in spaceguages that are intersections of,Sdnd SR (resp.
complexity. The canonical contrast is betweenLT; and SR, SL; and PT) languages. Where LT
sequences of automatad,...,A,) that count (PT) languages are determined by #wetof sub-
modulo some sequence of; < N. If the strings (subsequences) that occur in the string.
m; are pairwise prime, the product will require These classes are of particular interest in phono-
[[;<i<n[mi] = ©((max;[m;])™) states. If on the tactics. They are linguistically well-motivated ap-
other hand, they are all multiples of each other itproaches to modeling phonotactics and they are

will require just® (max;[m;]). sufficiently powerful to model most phonotactic
patterns. The results of Heinz (2007) and Heinz
7 Examples (2010) strongly suggest that nearly all segmental

gpatterns ar¢SL + SP),; for smallk and!. More-
over, roughly 72% of the stress patterns that are in-
cluded in Heinz's database (Phonology Lab, 2012)

guages in which the parameters of the cldssdr of patterns that have been attested in natural lan-
example) are fixed can be factored in this Waf. 9uage can be modeled with Blgrammars with
the parameters are not fixed and the class of larft < 6. Of the rest, all but four are LiT+ SP; and
guages is not finite, none of these classes can Bd! but two are L% + SP;. Both of these last two
identified in the limit from positive data at lSo '€ Properly regular (Wibel et al., ).

this approach is potentially useful at least for all _

sub-Star-Free. The learners for non-strict classe8 Conclusion

are practical, however, only for sma!lvalues of theWe have shown how subregular classes of lan-
parameters. So that leaves the Strictly Loca), SL

d Strictly Pi . R he obvi guages can be learned over factored representa-
2”8 tatrrlcéttz lecewise SRanguages as the obvi- tions, which can be exponentially more compact
u gets.

than representations with a single DFA. Essen-
_The Sk Ianguages are those that are deter’[ially, words in the data presentation are passed
mined by the ;upstnngs 9f Ieﬂgth no greater tharfhrough each factor, “activating” the parts touched.
k that occur within the string (including epdmark- This approach immediately allows one to natu-
ers). '_I'hese_ can be factored on the basis of tho":‘r%dly “mix” well-characterized learnable subreg-
substrings, Ju_St a_s the SRinguages can, although ular classes in such a way that the resulting lan-
the construction is somewhat more complex. (Se@uage class is also learnable. While this mixing is

tlh9e77K Y;Uth—MOI‘I‘ISf— zrr_;\tt a}'19°”tgm (K_nuth et gl., partly motivated by the different kinds of phono-
) foraway of doing this.) But Slisacasein ¢ patterns in natural language, it also suggests

3We conjecture that there is a parameterized class of lan@ very interesting theoretical possibility. Specifi-
guages that is equivalent to the Star-Free languages, Whic@ally, we anticipate that the right parameterization

would make that class learnable in this way as well. fth well-studied subr lar cl will cover
“For most of these classes, including the Definite,O ese well-studied subregular classes cove

Reverse-Definite and Strictly Local classes and their supethe class of star-free languages. Future work could

classes, this is immediate from the fact that they are superg|sg include extending the current analysis to fac-
finite. SP, on the other hand, is not super-finite (since itt . tochastic | h . that
does not include all finite languages) but it is, nevertleles 0oring stochastic languages, pernaps in a way tha

not IPLD. connects with earlier research on factored HMMs

Factored grammars in which each factor reco
nizes>*, as in the case of Figure 1, are of par-
ticular interest. Every sub-Star-Free class of lan



(Ghahramani and Jordan, 1997). James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy
Hurst, Dakotah Lambert, and Sean Wibel. to appear.
Cognitive and sub-regular complexity. Rroceed-
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