
Learning Subregular Classes of Languages with Factored Deterministic
Automata

Abstract

This paper shows how factored finite-
state representations of subregular lan-
guage classes are identifiable in the limit
from positive data by learners which are
polytime iterative and optimal. These rep-
resentations are motivated in two ways.
First, the size of this representation for
a given regular language can be expo-
nentially smaller than the size of the
minimal deterministic acceptor recogniz-
ing the language. Second, these rep-
resentations (including the exponentially
smaller ones) describe actual formal lan-
guages which successfully model natural
language phenomenon, notably in the sub-
field of phonology.

1 Introduction

In this paper we show how to define certain sub-
regular classes of languages which are identifiable
in the limit from positive data (ILPD) by efficient,
well-behaved learners with a lattice-structured hy-
pothesis space (Heinz et al., 2012). It is shown
that every finitesetof DFAs defines such an ILPD
class. In this case, each DFA can be viewed as
onefactor in the description of every language in
the class. This factoring of language classes into
multiple DFA can provide acompact, canonical
representation of the grammars foreverylanguage
in the class. Additionally, many subregular classes
of languages can be learned by the above methods
including the Locallyk-Testable, Strictlyk-Local,
Piecewisek-Testable, and Strictlyk-Piecewise
languages (McNaughton and Papert, 1971; Rogers
and Pullum, 2011; Rogers et al., 2010). From a
linguistic (and cognitive) perspective, these sub-
regular classes are interesting becuase they appear
to be sufficient for modeling phonotactic patterns
in human language (Heinz, 2010; Heinz et al.,
2011; Rogers et al., to appear).

2 Preliminaries

For any functionf and elementa in the domain of
f , we write f(a)↓ if f(a) is defined, andf(a)↑
otherwise.Σ∗ andΣk denote all sequences of any
finite length, and of lengthk, over a finite alphabet
Σ. The empty string is denotedλ. A languageL
is a subset ofΣ∗.

For all x, y belonging to a partially-ordered set
(S,≤), if x ≤ z andy ≤ z then z is anupper
boundof x andy. For allx, y ∈ S, theleastupper
bound (lub)x⊔ y = z iff x ≤ z, y ≤ z, and for all
z′ which upper boundx andy, it is the case that
z ≤ z′. An upper semi-latticeis a partially ordered
set(S,≤) such that every subset ofS has a lub. If
S is finite, this is equivalent to the existence of
x ⊔ y for all x, y ∈ S.

A deterministic finite-state automaton (DFA) is
a tuple(Q,Σ, q0, F, δ). The states of the DFA are
Q; the input alphabet isΣ; the initial state isq0;
the final states areF ; and δ : Q × Σ → Q is
the transitionfunction. The transition function’s
domain is extended toQ × Σ∗ in the usual way.
The language of a DFA is writtenL(A) and equals
{w ∈ Σ∗ | δ(q0, w) ∈ F}. A DFA is trim iff
(∀q ∈ Q)[∃w, v ∈ Σ∗ | δ(q0, w) = q ∧ δ(q, v) ∈
F]. The empty DFA isA∅ = (∅,Σ, q0,∅,∅).

The DFA product ofA1 = (Q1,Σ, q01, F1, δ1)
andA2 = (Q2,Σ, q02, F2, δ2) is

⊗(A1,A2) = (Q,Σ, q0, F, δ)

whereQ = Q1×Q2, q0 = (q01, q02),F = F1×F2

and

(∀q ∈ Q)(∀σ ∈ Σ)
[

δ
(

(q1, q2), σ
)

= (q′1, q
′
2)

⇔ δ1(q1, σ) = q′1 ∧ δ2(q2, σ) = q′2

]

.

The DFA product of two DFA is also a DFA. If the
two DFA are trim, then their product is as well.

The product operation is associative and com-
mutative (up to isomorphism), and so it can be ap-
plied to a finite setS of DFA, in which case we
write

⊗

S =
⊗

A∈S A (letting
⊗

{A} = A). In
this paper, grammars are finitesequencesof DFAs
~A = 〈A1 · · · An〉 and we also use the

⊗

nota-
tion for the product of a finite sequence of DFAs:
L(~A) = L

(
⊗

A∈ ~A
A
)

. Sequences are used in-
stead of sets in order to match factors in two gram-
mars. LetDFA denote the collection of finite se-
quences of DFAs.

Theorem 1 is well-known.

Theorem 1 Consider a finite set ofS of DFA.
ThenL

(
⊗

A∈S A
)

=
⋂

A∈S L(A).

An important consequence of Theorem 1 is that
some languages are exponentially more com-
pactly represented by their factors. The grammar
~A = {A1 · · · An} has

∑

1≤i≤n card(Qi) states,
whereas the trimmed

⊗

G can have as many as
∏

1≤i≤n card(Qi) ∈ Θ(max1≤i≤n(card(Qi))
n)

states.

2.1 Identification in the limit

A positive textT for a languageL is a total
function T : N → L ∪ {#} (# is a ‘pause’)
such that∀w ∈ L, ∃n ∈ N such thatT (n) =
w. Let T [i] denote the initial finite sequence
T (0), T (1) . . . T (i − 1). Let SEQ denote the set
of all finite initial portions of all positive texts
for all possible languages. Thecontentof an el-
ementT [i] of SEQ is content(T [i]) = {w ∈
Σ∗ | (∃j ≤ i − 1)[T (j) = w]}. In this paper,
learning algorithms are programs:φ : SEQ →
DFA. A learnerφ identifies in the limit from
positive textsa collection of languagesL if and
only if for all L ∈ L, for all positive textsT
for L, there exists ann ∈ N such that for all
m ≥ n, φ(T [m]) = φ(T [n]) = G andL(G) = L

(see Gold (1967; Jain et al. (1999)). A class of lan-
guages is ILPD iff it is identifiable in the limit by
such a learner.

3 Classes of factorable-DFA languages

In this section, classes of factorable-DFA lan-
guages are introduced. The notion of sub-DFA is
central to this concept. Pictorially, a sub-DFA is
obtained from a DFA by removing zero or more
states, transitions, and/or revoking the final status
of zero or more final states.

Definition 1 For any DFAA = (Q,Σ, q0, F, δ),
a DFAA′ = (Q′,Σ′, q′0, F

′, δ′) is sub-DFAof A,

written A′ ⊑ A, if and only ifQ′ ⊆ Q, Σ ⊆ Σ′,
q′0 = q0, F ′ ⊆ F , δ′ ⊆ δ. The sub-DFA relation
is extended to grammars (sequences of DFA). Let
~A = 〈A1 · · · An〉 and ~A′ = 〈A′

1 · · · A
′
n〉. Then

~A′ ⊑ ~A ⇐⇒ (∀0 ≤ i ≤ n)[A′
i ⊑ Ai].

Clearly, ifA′ ⊑ A thenL(A′) ⊆ L(A).
Every grammar ~A determines a class of lan-

guages: those recognized by a sub-grammar of~A.
Our interest is not inL(~A), itself. Indeed, this will
generally beΣ∗. Rather, we our interest is in iden-
tifying languages relative to the class of languages
that are recognizable by sub-grammars of~A.

Definition 2 LetG(~A)
def
= {~B | ~B ⊑ ~A}, the class

of grammars that are sub-grammars of~A.

LetL(~A)
def
= {L(~B) | ~B ⊑ ~A}, the class of lan-

guages recognized by sub-grammars of~A.
A class of languages is a factorable-DFA class

iff it is L(~A) for some~A.

The setG(~A) is necessarily finite, since~A is, so
every classL(~A) is trivially ILPD by a learning
algorithm that systematically rules out grammars
that are incompatible with the text, but this naı̈ve
algorithm is prohibitively inefficient. Our goal is
to establish that the efficient general learning algo-
rithm given by Heinz et al. (2012) can be applied
to every class of factorable-DFA languages, and
that this class includes many of the well-known
sub-regular language classes as well as classes that
are, in a particular sense, mixtures of these.

4 A motivating example

This section describes the Strictly 2-Piecewise lan-
guages, which motivates the factorization which
is at the heart of this analysis Strictly Piecewise
(SP) languages are characterized in Rogers et al.
(2010) and are a special subclass of the Piece-
wise Testable languages (Simon, 1975). In fact
SP are exactly those languages closed under sub-
sequence.

Every SP language is the intersection of a finite
set of complements of principle shuffle ideals:

L ∈ SP
def
⇐⇒ L =

⋂

w∈S

[SI(w)], S finite

where

SI(w)
def
= {v ∈ Σ∗ | w = σ1 · · · σk and

(∃v0, . . . , vk ∈ Σ∗)[v = v0 · σ1 · v1 · · · σk · vk]}

Sov ∈ SI(w) iff w occurs as a subsequence ofv

andL ∈ SP iff there is a finite set of strings for

a0 a1 b0 b1 c0 c1

b, c

a

a, b, c a, c

b

a, b, c a, b

c

a, b, c

Figure 1: The sequence of DFA~A = 〈Aa, Ab, Ac〉, whereΣ = {a, b, c} and eachAσ acceptsΣ∗ and
whose states distinguish whetherσ has yet occurred.

a0b0c0

a1b0c0

a0b1c0

a0b0c1

a1b1c0

a0b1c1

a1b0c1

a1b1c1

a

b

c

b

c

a

a

c

b

a

b

c

c

a, b

ab, c

b

a, c

a, b, c

Figure 2: The productAa ×Ab ×Ac.

whichL includes all and only those strings that do
not include those strings as subsequences.

A language is SPk iff it is generated by a set of
strings each of which is of length less than or equal
to k. Clearly, every SP language is SPk for some
k and SP=

⋃

1≤k∈N[SPk].

If w ∈ Σ∗ and |w| = k, thenSI(w) = L(Aw)
for a DFA Aw with no more thank states. For
example, ifk = 2 andΣ = {a, b, c} and, hence,
w ∈ {a, b, c}2, then the minimal trim DFA recog-
nizing SI(w) will be a sub-DFA (in which one of
the transitions from theσ1 state has been removed)
of one of the three DFA of Figure 1.

Figure 1 shows~A = 〈Aa, Ab, Ac〉, whereΣ =
{a, b, c} and eachAσ is a DFA acceptingΣ∗

whose states distinguish whetherσ has yet oc-
curred. Figure 2 shows

⊗

~A.

Note that every SP2 language over{a, b, c} is
L(~B) for some ~B ⊑ ~A. The class of grammars
of G(~A) recognize a slight extension of SP2 over
{a, b, c} (which includes 1-Reverse Definite lan-
guages as well).

Observe that 6 states are required to describe~A
but 8 states are required to describe

⊗

~A. Let ~AΣ

be the sequence of DFA with one DFA for each
letter inΣ, as in Figure 1. Ascard(Σ) increases
the number of states of~AΣ is 2 × card(Σ) but
the number of states in

⊗

~AΣ is 2card(Σ). The
number of states in the product, in this case, is ex-
ponential in the number of its factors.

The Strictly 2-Piecewise languages are cur-
rently the strongest computational characteriza-
tion1 of long-distance phonotactic patterns in hu-
man languages (Heinz, 2010). The size of the
phonemic inventories2 in the world’s languages
ranges from 11 to 140 (Maddieson, 1984). En-
glish has about 40, depending on the dialect. The
fact that there are about1011 neurons in human
brains (Williams and Herrup, 1988), which is
about 236.5 helps motivate interest in the more
compact, parallel representation given by~AΣ as
opposed to the singular representation of the DFA
⊗

~AΣ.

1See Heinz et al. (2011) for competing characterizations.
2The mental representations of speech sounds are called

phonemes, and the phonemic inventory is the set of these rep-
resentations (Hayes, 2009).

5 Learning factorable classes of
languages

In this section, classes of factorable-DFA lan-
guages are shown to be analyzable as finite lattice
spaces. By Theorem 6 of Heinz et al. (2012), ev-
ery such class of languages can be identified in the
limit from positive texts.

Definition 3 (Joins) Let A = (Q,Σ, q0, F, δ),
A1 = (Q1,Σ, q0, F1, δ1), A2 =
(Q2,Σ, q0, F2, δ2) such that A1 ⊑ A and
A2 ⊑ A. The join of A1 and A2 is
A1 ⊔ A2 = (Q1 ∪Q2,Σ, q0, F1 ∪ F2, δ1 ∪ δ2).

Similarly, for all ~A = 〈A1 · · · An〉, ~B =
〈B1 · · · Bn〉, and ~C2 = 〈C1 · · · Cn〉 such that~B ⊑
~A and ~C ⊑ ~A, the join of and ~B and ~C is ~B ⊔ ~C =
〈B1 ⊔ C1 · · · Bn ⊔ Cn〉.

Note that the join of two sub-DFA ofA is also a
sub-DFA ofA. SinceG(~A) is finite, binary join
suffices to define join of any set of sub-DFA of a
given DFA (as recursive binary joins). Let

⊔

[S]
be the join of the set of sub-DFAsS.

Lemma 1 The set of sub-DFA of a DFAA, or-
dered by⊑, ({B ⊑ A},⊑), is an upper semi-
lattice with the least upper bound of a set ofS

sub-DFA ofA being their join.
Similarly the set of sub-grammars of a grammar

~A, ordered again by⊑, ({~B ⊑ ~A},⊑), is an upper
semi-lattice with the least upper bound of a set of
sub-grammars of~A being their join.

This follows from the fact thatQ1 ∪Q2 (similarly
F1 ∪F2 andδ1 ∪ δ2) is the lub ofQ1 andQ2 (etc.)
in the lattice of sets ordered by subset.

5.1 Paths and Chisels

Definition 4 For a DFAA, thepathof a wordw =
σ0σ1 · · · σn ∈ Σ∗ in A is the sequenceπ(A, w) =
〈

(q0, σ0), (q1, σ1), · · · (qn, σn), (qn+1, λ)
〉

where
(∀0 ≤ i ≤ n)[qi+1 = δ(qi, σi)] if δ(q0, w)↓; oth-
erwiseπ(A, w) ↑. The set of states traversed in
a pathπ will be denotedQπ, the transitions tra-
versedδπ, and if w ∈ L(A) then the set of final
states in the pathπ isFπ = {qn+1} and the empty
set otherwise.

Next, for any DFAA, we define thechisel
of a word, which etches out a path withinA iff
w ∈ L(A) and returns the sub-DFA exactly en-
compassing that path.

Definition 5 For any DFAA = (Q,Σ, q0, F, δ)
and all w ∈ Σ∗. The chisel of w

given A is the sub-DFA CA(w) =
(Qπ(A,w),Σ, q0, Fπ(A,w), δπ(A,w)) if w ∈ L(A);
otherwise CA(w) = A∅. Consider
any ~A = 〈A1 · · · An〉 and any word
w ∈ Σ∗. The chisel of w given ~A is
C ~A

(w) = 〈CA1
(w) · · ·CA1

(w)〉.

Observe that for all wordsw and allA, CA(w) ⊑
A and thatCA(w) is trim.

Using the join, the domain of the chisel is ex-
tended to sets of words:C ~A

(S) =
⊔

w∈S C ~A
(w).

Note that{C ~A
(w) | w ∈ Σ∗} is finite, since

{~B | ~B ⊑ ~A} is.

Theorem 2 For any grammar ~A, let C(~A) =
{C ~A

(S) | S ⊆ Σ∗}. Then(C(~A),⊑) is an up-
per semi-lattice with the lub of two elements given
by the join⊔.

Proof This follows immediately from the finite-
ness of{C ~A

(w) | w ∈ Σ∗} and Lemma 1. ���

Lemma 2 For all A = (Q,Σ, q0, F, δ), there is
a finite setS ⊂ Σ∗ such that

⊔

w∈S CA(w) = A.

Similarly, for all ~A = 〈A1 · · · An〉, there is a finite
setS ⊂ Σ∗ such thatC ~A

(S) = G.

Proof For the first statement, letS be the set of
uσv where, for eachq ∈ Q and for eachσ ∈ Σ,
δ(q0, u) ↓= q and δ(δ(q, σ), v) ↓∈ F such that
uσv has minimal length. By construction,S is
finite. Furthermore, for every state and every
transition inA, there is a word inS whose path
touches that state and transition. By definition of
⊔ it follows thatCA(S) = A. For proof of the
second statement,∀Ai in ~A, constructSi as stated
and take their union. ���

Heinz et al. (2012) define lattice spaces. For an
upper semi-latticeV and a functionf : Σ∗ → V

such thatf and⊔ are (total) computable,(V, f) is
called aLattice Space (LS)iff, for each v ∈ V ,
there exists a finiteD ⊆ range(f) with

⊔

D = v.

Theorem 3 For all grammars ~A = 〈A1 · · · An〉,
(C(~A), C ~A

) is a lattice space.

Proof For all ~A′ ∈ C(~A), by Lemma 2, there is a
finite S ⊆ Σ∗ such that

⊔

w∈S C ~A
(w) = ~A′. ���

For Heinz et al. (2012), elements of the lat-
tice are grammars. Likewise, here, each grammar
~A = 〈A1 · · · An〉 defines a lattice whose elements
are its sub-grammars. Heinz et al. (2012) associate

the languagesof a grammarv in a lattice space
(V, f) with {w ∈ Σ∗ | f(w) ⊑ v}. This definition
coincides with ours: for any element~A′ of C(~A)
(note ~A′ ⊑ ~A), a wordw belongs toL(~A′) if and
only if C ~A

(w) is a sub-DFA of ~A′. Theclass of
languagesof a LS is the collection of languages
obtained by every element in the lattice. For ev-
ery LS(C(~A), C ~A

), we now define a learnerφ ac-
cording to the construction in Heinz et al. (2012):
∀T ∈ SEQ, φ(T) =

⊔

w∈content(T) C ~A
(w).

Let L(C(~A),C ~A
) denote the class of languages

associated with the LS in Theorem 3. Accord-
ing to Heinz et al. (2012, Theorem 6), the learner
φ identifies L(C(~A),CvA) in the limit from pos-
itive data. Furthermore,φ is polytime itera-
tive, i.e can compute the next hypothesis in poly-
time from the previous hypothesis alone, and
optimal in the sense that no other learner con-
verges more quickly on languages inL(C(~A),CG).
In addition, this learner isglobally-consistent,
locally-conservative, strongly-monotone, andpru-
dent. Formal definitions of these terms are given
in Heinz et al. (2012) and can also be found else-
where, e.g. (Jain et al., 1999).

6 Complexity considerations

The space of sub-grammars of a given sequence of
DFAs is necessarily finite and, thus, identifiable in
the limit from positive data by a naı̈ve learner that
simply enumerates the space of grammars. The
lattice learning algorithm has better efficiency be-
cause it works bottom-up, extending the grammar
minimally, at each step, with the chisel of the cur-
rent string of the text. The lattice learner never
explores any part of the space of grammars that
is not a sub-grammar of the correct one and, as it
never moves down in the lattice, it will skip much
of the space of grammars that are sub-grammars of
the correct one. The space it explores will be mini-
mal, given the text it is running on. Generalization
is a result of the fact that in extending the gram-
mar for a string the learner adds its entire Nerode
equivalence class to the language.

The time complexity of either learning or recog-
nition with the factored automata may actually be
somewhat worse than the complexity of doing so
with its product. Computing the chisel of a string
w in the product machine of Figure 2 isΘ(|w|),
while in the factored machine of Figure 1 one must
compute the chisel in each factor and its complex-
ity is, thus,Θ(|w| card(Σ)k−1). But Σ andk are

fixed for a given factorization, so this works out to
be a constant factor.

Where the factorization makes a substantial dif-
ference is in the number of features that must
be learned. In the factored grammar of the
example, the total number of states plus edges
is Θ(kcard(Σ)k−1), while in its product it is
Θ(2(card(Σ)k−1)). This represents an exponential
improvement in the space complexity of the fac-
tored grammar.

Every DFA can be factored in many ways, but
the factorizations do not, necessarily provide an
asymptotically significant improvement in space
complexity. The canonical contrast is between
sequences of automata〈A1, . . . ,An〉 that count
modulo some sequence ofmi ∈ N. If the
mi are pairwise prime, the product will require
∏

1≤i≤n[mi] = Θ((maxi[mi])
n) states. If on the

other hand, they are all multiples of each other it
will require justΘ(maxi[mi]).

7 Examples

Factored grammars in which each factor recog-
nizesΣ∗, as in the case of Figure 1, are of par-
ticular interest. Every sub-Star-Free class of lan-
guages in which the parameters of the class (k, for
example) are fixed can be factored in this way.3 If
the parameters are not fixed and the class of lan-
guages is not finite, none of these classes can be
identified in the limit from positive data at all.4 So
this approach is potentially useful at least for all
sub-Star-Free. The learners for non-strict classes
are practical, however, only for small values of the
parameters. So that leaves the Strictly Local SLk

and Strictly Piecewise SPk languages as the obvi-
ous targets.

The SLk languages are those that are deter-
mined by the substrings of length no greater than
k that occur within the string (including endmark-
ers). These can be factored on the basis of those
substrings, just as the SPk languages can, although
the construction is somewhat more complex. (See
the Knuth-Morris-Pratt algorithm (Knuth et al.,
1977) for a way of doing this.) But SLk is a case in

3We conjecture that there is a parameterized class of lan-
guages that is equivalent to the Star-Free languages, which
would make that class learnable in this way as well.

4For most of these classes, including the Definite,
Reverse-Definite and Strictly Local classes and their super
classes, this is immediate from the fact that they are super-
finite. SP, on the other hand, is not super-finite (since it
does not include all finite languages) but it is, nevertheless
not IPLD.

which there is no complexity advantage in factor-
ing the DFA. This is because every SLk language
is recognized by a DFA that is a Myhill graph:
with a state for each string ofΣ<k (i.e., of length
less thank). Such a graph hasΘ(card(Σ)k−1)
states, asymptotically the same as the number of
states in the factored grammar, which is actually
marginally worse.

Therefore, factored SLk grammars are not, in
themselves, interesting. But they are interesting as
factors of other grammars. Let(SL+SP)k,l (resp.
(LT + SP)k,l, (SL + PT)k,l) be the class of lan-
guages that are intersections of SLk and SPl (resp.
LTk and SPl, SLk and PTl) languages. Where LT
(PT) languages are determined by thesetof sub-
strings (subsequences) that occur in the string.

These classes are of particular interest in phono-
tactics. They are linguistically well-motivated ap-
proaches to modeling phonotactics and they are
sufficiently powerful to model most phonotactic
patterns. The results of Heinz (2007) and Heinz
(2010) strongly suggest that nearly all segmental
patterns are(SL+ SP)k,l for smallk andl. More-
over, roughly 72% of the stress patterns that are in-
cluded in Heinz’s database (Phonology Lab, 2012)
of patterns that have been attested in natural lan-
guage can be modeled with SLk grammars with
k ≤ 6. Of the rest, all but four are LT1 + SP4 and
all but two are LT2 + SP4. Both of these last two
are properly regular (Wibel et al.,).

8 Conclusion

We have shown how subregular classes of lan-
guages can be learned over factored representa-
tions, which can be exponentially more compact
than representations with a single DFA. Essen-
tially, words in the data presentation are passed
through each factor, “activating” the parts touched.
This approach immediately allows one to natu-
rally “mix” well-characterized learnable subreg-
ular classes in such a way that the resulting lan-
guage class is also learnable. While this mixing is
partly motivated by the different kinds of phono-
tactic patterns in natural language, it also suggests
a very interesting theoretical possibility. Specifi-
cally, we anticipate that the right parameterization
of these well-studied subregular classes will cover
the class of star-free languages. Future work could
also include extending the current analysis to fac-
toring stochastic languages, perhaps in a way that
connects with earlier research on factored HMMs

(Ghahramani and Jordan, 1997).

References

Zoubin Ghahramani and Michael I. Jordan. 1997. Fac-
torial hidden markov models.Machine Learning,
29(2):245–273.

E.M. Gold. 1967. Language identification in the limit.
Information and Control, 10:447–474.

Bruce Hayes. 2009.Introductory Phonology. Wiley-
Blackwell.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tan-
ner. 2011. Tier-based strictly local constraints for
phonology. InProceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 58–64, Portland, Oregon, USA, June. As-
sociation for Computational Linguistics.

Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing.
2012. Learning with lattice-structured hypothesis
spaces. Theoretical Computer Science, 457:111–
127, October.

Jeffrey Heinz. 2007. The Inductive Learning of
Phonotactic Patterns. Ph.D. thesis, University of
California, Los Angeles.

Jeffrey Heinz. 2010. Learning long-distance phono-
tactics.Linguistic Inquiry, 41(4):623–661.

Sanjay Jain, Daniel Osherson, James S. Royer, and
Arun Sharma. 1999.Systems That Learn: An In-
troduction to Learning Theory (Learning, Develop-
ment and Conceptual Change). The MIT Press, 2nd
edition.

Donald Knuth, James H Morris, and Vaughn Pratt.
1977. Fast pattern matching in strings.SIAM Jour-
nal on Computing, 6(2):323–350.

Ian Maddieson. 1984.Patterns of Sounds. Cambridge
University Press, Cambridge, UK.

Robert McNaughton and Seymour Papert. 1971.
Counter-Free Automata. MIT Press.

UD Phonology Lab. 2012. UD phonology lab
stress pattern database.http://phonology.
cogsci.udel.edu/dbs/stress. Accessed
December 2012.

James Rogers and Geoffrey Pullum. 2011. Aural pat-
tern recognition experiments and the subregular hi-
erarchy. Journal of Logic, Language and Informa-
tion, 20:329–342.

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlef-
sen, Molly Visscher, David Wellcome, and Sean
Wibel. 2010. On languages piecewise testable in the
strict sense. In Christian Ebert, Gerhard Jäger, and
Jens Michaelis, editors,The Mathematics of Lan-
guage, volume 6149 ofLecture Notes in Artifical In-
telligence, pages 255–265. Springer.

James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy
Hurst, Dakotah Lambert, and Sean Wibel. to appear.
Cognitive and sub-regular complexity. InProceed-
ings of the 17th Conference on Formal Grammar.

Imre Simon. 1975. Piecewise testable events. In
Automata Theory and Formal Languages: 2nd
Grammatical Inference conference, pages 214–222,
Berlin. Springer-Verlag.

Sean Wibel, James Rogers, and Jeffery Heinz. Factor-
ing of stress patterns. In preparation.

R.W. Williams and K. Herrup. 1988. The control of
neuron number. Annual Review of Neuroscience,
11:423–453.

