Cognitive Complexity in the Sub-Regular Realm

> James Rogers
> Dept. of Computer Science
> Earlham College
> jrogers@cs.earlham.edu
> http://cs.earlham.edu/~jrogers/slides/UCLA.ho.pdf
> Joint work with Jeff Heinz, U. Delaware,
> Geoff Pullum and Barbara Scholz, U.Edinburgh, and a raft of Earlham College undergrads.
> This work completed, in part, while in residence at the
> Radcliffe Institute for Advanced Study

Yawelmani Yokuts (Kissberth'73)

Slide 2

Definition $1 A$ finite-state stringset is one in which there is an a priori bound, independent of the length of the string, on the amount of information that must be inferred in distinguishing strings in the set from those not in the set.

$$
\text { Regular }=\text { Recognizable }=\text { Finite-State }
$$

Cognitive Complexity from First Principles

What kinds of distinctions does a cognitive mechanism need to be sensitive to in order to classify an event with respect to a pattern?

Slide 3

Reasoning about patterns

- What objects/entities/things are we reasoning about?
- What relationships between them are we reasoning with?

Dual characterizations of complexity classes

Computational classes

- Characterized by abstract computational mechanisms
- Equivalence between mechanisms

Slide 4

- Means to determine structural properties of stringsets

Descriptive classes

- Characterized by the nature of information about the properties of strings that determine membership
- Independent of mechanisms for recognition
- Subsume wide range of types of patterns

Some Assumptions about Linguistic Behaviors

- Perceive/process/generate linear sequence of (sub)events

Slide 5

- Can model as strings - linear sequence of abstract symbols
- Discrete linear order (initial segment of \mathbb{N}).
- Labeled with alphabet of events

Partitioned into subsets, each the set of positions at which some event occurs.

Word models
$\left\langle\mathcal{D}, \triangleleft, \triangleleft^{+}, P_{\sigma}\right\rangle_{\sigma \in \Sigma}$
$\begin{array}{ll}(+1) & \left\langle\mathcal{D}, \triangleleft, P_{\sigma}\right\rangle_{\sigma \in \Sigma}\end{array} \quad(<)\left\langle\mathcal{D}, \triangleleft^{+}, P_{\sigma}\right\rangle_{\sigma \in \Sigma}$

Slide 6
D - Finite
\triangleleft^{+}- Linear order on \mathcal{D}
$\triangleleft-$ Successor wrt \triangleleft^{+}
$P_{\sigma}-$ Subset of \mathcal{D} at which σ occurs (P_{σ} partition \mathcal{D})
$C C V C=\left\langle\{0,1,2,3\},\{\langle i, i+1\rangle \mid 0 \leq i<3\},\{0,1,3\}_{C},\{2\}_{V}\right\rangle$

Adjacency-Substrings

Definition 2 (k-Factor)

v is a factor of w if $w=u v x$ for some $u, v \in \Sigma^{*}$.
Slide 7
v is a k-factor of w if it is a factor of w and $|v|=k$.

$$
\begin{aligned}
F_{k}(w) \stackrel{\operatorname{def}}{=} \begin{cases}\left\{v \in \Sigma^{k} \mid\left(\exists u, x \in \Sigma^{*}\right)[w=u v x]\right\} & \text { if }|w| \geq k \\
\{w\} & \text { otherwise }\end{cases} \\
\qquad \begin{array}{l}
F_{2}(C V C V C V)=\{C V, V C\} \\
F_{7}(C V C V C V)=\{C V C V C V\}
\end{array}
\end{aligned}
$$

Strictly Local Stringsets-SL

Strictly k-Local Definitions
-Grammar is set of permissible k-factors

Slide 8

$$
\begin{gathered}
\mathcal{G} \subseteq F_{k}\left(\{\rtimes\} \cdot \Sigma^{*} \cdot\{\ltimes\}\right) \\
w \models \mathcal{G} \stackrel{\text { def }}{\Longleftrightarrow} F_{k}(\rtimes \cdot w \cdot \ltimes) \subseteq \mathcal{G} \\
L(\mathcal{G}) \stackrel{\text { def }}{=}\{w \mid w \models \mathcal{G}\}
\end{gathered}
$$

Definition 3 (Strictly Local Sets) A stringset Lover Σ is Strictly Local iff there is some strictly k-local definition \mathcal{G} over Σ (for some k) such that L is the set of all strings that satisfy \mathcal{G}

SL Hierarchy

Definition $4(S L)$
A stringset is Strictly k-Local if it is definable with an $S L_{k}$ definition.

Slide $9 \quad$ A stringset is Strictly Local (in $S L$) if it is $S L_{k}$ for some k.
Theorem 1 (SL-Hierarchy)

$$
S L_{2} \subsetneq S L_{3} \subsetneq \cdots \subsetneq S L_{i} \subsetneq S L_{i+1} \subsetneq \cdots \subsetneq S L
$$

Every Finite stringset is SL_{k} for some k : Fin \subseteq SL.
There is no k for which SL_{k} includes all Finite languages.
$\star C C C$ is SL_{3}

$$
\mathcal{G}_{\neg C C C}=F_{3}\left(\{\rtimes\} \cdot \Sigma^{*} \cdot\{\ltimes\}\right)-\{C C C\}
$$

Slide 10

Membership in an SL_{k} stringset depends only on the individual k-factors which occur in the string.

Scanners

Slide 11

Recognizing an SL_{k} stringset requires only remembering the k most recently encountered symbols.

Character of Strictly k-Local Sets

Theorem (Suffix Substitution Closure):

A stringset L is strictly k-local iff whenever there is a string x of length $k-1$ and strings w, y, v, and z, such that

$$
\begin{array}{llll}
w & \cdot & \overbrace{x}^{k-1} \cdot & y \in L \\
v & \cdot & x
\end{array}
$$

then it will also be the case that
$w \cdot x \cdot z \in L$

E.g.:			But $\star C C C$ is not SL_{2} :				
V	VC	$C V$	$\in \star$ ¢ $C C$	C	C	VC	$\in \star C C C$
C	$V C$	VC	€ぇ $C C C$	V	C	$C V$	$\in \star C C C$
V	$V C$	$V C$	€^ $C C C$	C	C	$C V$	$\notin \star C C C$

Cognitive interpretation of SL

- Any cognitive mechanism that can distinguish member strings from non-members of an SL_{k} stringset must be sensitive, at least, to the length k blocks of events that occur in the presentation of the string.
Slide 14
- If the strings are presented as sequences of events in time, then this corresponds to being sensitive, at each point in the string, to the immediately prior sequence of $k-1$ events.
- Any cognitive mechanism that is sensitive only to the length k blocks of events in the presentation of a string will be able to recognize only SL_{k} stringsets.

Cambodian

Slide 15

Cambodian-Can't start with a light syllable

Slide 16

Cambodian-No light follows another light

Slide 17

Slide 18

Slide 20

Arabic (Cairene)

Slide 21

$\rtimes \sigma_{0}$	$\sigma_{0} \sigma_{0}$	$\sigma_{2}^{\prime} \ltimes$
$\rtimes \sigma_{0}^{\prime}$	$\sigma_{0} \sigma_{0}$	\ltimes
$\star \rtimes \sigma_{0}$	$\sigma_{0} \sigma_{0}$	\ltimes

$\mathcal{G}_{\text {ArabicCai }}=$
$\{\cdots\}-\left\{\sigma \sigma \sigma \ltimes \mid \sigma \in \sigma_{0}, \sigma_{1}, \sigma_{2}\right\}$

Strictly Local Stress Patterns

Heinz's Stress Pattern Database (ca. 2007)—109 patterns
9 are $\mathrm{SL}_{2} \quad$ Abun West, Afrikans, ... Cambodian,... Maranungku

44 are $\mathrm{SL}_{3} \quad$ Alawa, Arabic (Bani-Hassan),...
24 are $\mathrm{SL}_{4} \quad$ Arabic (Cairene), ...
3 are $\mathrm{SL}_{5} \quad$ Asheninca, Bhojpuri, Hindi (Fairbanks)
1 is $\mathrm{SL}_{6} \quad$ Icua Tupi
28 are not SL Amele, Bhojpuri (Shukla Tiwari), Arabic Classical, Hindi (Keldar), Yidin,... 72% are SL , all $k \leq 6$. 49% are SL_{3}.

Locally definable stringsets

$$
\begin{aligned}
f \in F_{k}\left(\rtimes \cdot \Sigma^{*} \cdot \ltimes\right) & w \models f & \stackrel{\text { def }}{\Longrightarrow} f \in F_{k}(\rtimes \cdot w \cdot \ltimes) \\
\varphi \wedge \psi & w \models \varphi \wedge \psi & \stackrel{\text { def }}{\Longrightarrow} w \models \varphi \text { and } w \models \psi \\
\neg \varphi & w \models \neg \varphi & \stackrel{\text { def }}{\Longrightarrow} w \not \models \varphi
\end{aligned}
$$

Slide 25
Definition 5 (Locally Testable Sets) A stringset L over Σ is Locally Testable iff (by definition) there is some k-expression φ over Σ (for some k) such that L is the set of all strings that satisfy φ :

$$
\begin{gathered}
L=L(\varphi) \stackrel{\text { def }}{=}\left\{w \in \Sigma^{*} \mid w \models \varphi\right\} \\
\mathrm{SL}_{k} \equiv \bigwedge_{f_{i} \notin \mathcal{G}}\left[\neg f_{i}\right] \subsetneq \mathrm{LT}_{k}
\end{gathered}
$$

Slide 26

LT Automata

Slide 27

Membership in an LT_{k} stringset depends only on the set of k-Factors which occur in the string.

Recognizing an LT_{k} stringset requires only remembering which k-factors occur in the string.

Character of Locally Testable sets

Theorem 2 (k-Test Invariance) A stringset L is Locally Testable iff

Slide 28 there is some k such that, for all strings x and y, if $\rtimes \cdot x \cdot \ltimes$ and $\rtimes \cdot y \cdot \ltimes$ have exactly the same set of k-factors then either both x and y are members of L or neither is.

$$
w \equiv_{k}^{L} v \stackrel{\text { def }}{\Longleftrightarrow} F_{k}(\rtimes w \ltimes)=F_{k}(\rtimes v \ltimes) .
$$

LT Hierarchy

Definition 6 ($L T$)
A stringset is k-Locally Testable if it is definable with an
Slide 29
$L T_{k}$-expression.
A stringset is Locally Testable (in $L T$) if it is $L T_{k}$ for some k.
Theorem 3 (LT-Hierarchy)

$$
L T_{2} \subsetneq L T_{3} \subsetneq \cdots \subsetneq L T_{i} \subsetneq L T_{i+1} \subsetneq \cdots \subsetneq L T
$$

Cognitive interpretation of LT

- Any cognitive mechanism that can distinguish member strings from non-members of an LT_{k} stringset must be sensitive, at least, to the set of length k blocks of events that occur in the presentation of the string-both those that do occur and those
Slide 30 that do not.
- If the strings are presented as sequences of events in time, then this corresponds to being sensitive, at each point in the string, to the length k blocks of events that occur at any prior point.
- Any cognitive mechanism that is sensitive only to the set of length k blocks of events in the presentation of a string will be able to recognize only LT_{k} stringsets.

Slide 31

$$
\mathbf{F O}(+1)
$$

Models: $\left\langle\mathcal{D}, \triangleleft, P_{\sigma}\right\rangle_{\sigma \in \Sigma}$
First-order Quantification (over positions in the strings)

$$
\begin{array}{cccl}
x \triangleleft y & w,[x \mapsto i, y \mapsto j] \models x \triangleleft y & \stackrel{\text { def }}{\Longleftrightarrow} j=i+1 \\
P_{\sigma}(x) & w,[x \mapsto i] \models P_{\sigma}(x) & \stackrel{\text { def }}{\Longleftrightarrow} i \in P_{\sigma} \\
\varphi \wedge \psi & \vdots & & \\
\neg \varphi & \vdots & & \\
\exists x)[\varphi(x)] & w, s \models(\exists x)[\varphi(x)] & \stackrel{\text { def }}{\Longleftrightarrow} & w, s[x \mapsto i] \models \varphi(x)] \\
& & & \text { for some } i \in \mathcal{D}
\end{array}
$$

Slide 32
$\mathrm{FO}(+1)$-Definable Stringsets: $L(\varphi) \stackrel{\text { def }}{=}\{w \mid w \models \varphi\}$.

$$
\text { One- } \sigma=L\left((\exists x) \left[\dot { \sigma } (x) \wedge (\forall y) \left[\begin{array}{c}
\sigma \\
(y) \rightarrow x \approx y]]), ~
\end{array}\right.\right.\right.
$$

Arabic (Classical) is $\mathrm{FO}(+1)$

Character of the $\operatorname{FO}(+1)$ Definable Stringsets

Definition 7 (Locally Threshold Testable) A set L is Locally Threshold Testable (LTT) iff there is some k and t such that, for all $w, v \in \Sigma^{*}$:
if for all $f \in F_{k}(\rtimes \cdot w \cdot \ltimes) \cup F_{k}(\rtimes \cdot v \cdot \ltimes)$
Slide 33
either $|w|_{f}=|v|_{f}$ or both $|w|_{f} \geq t$ and $|v|_{f} \geq t$,
then $w \in L \Longleftrightarrow v \in L$.
Theorem 4 (Thomas) A set of strings is First-order definable over $\left\langle\mathcal{D}, \triangleleft, P_{\sigma}\right\rangle_{\sigma \in \Sigma}$ iff it is Locally Threshold Testable.

Membership in an $\mathrm{FO}(+1)$ definable stringset depends only on the multiplicity of the k-factors, up to some fixed finite threshold, which occur in the string.

Cognitive interpretation of $\mathbf{F O}(+1)$

- Any cognitive mechanism that can distinguish member strings from non-members of an $\mathrm{FO}(+1)$ stringset must be sensitive, at least, to the multiplicity of the length k blocks of events, for some fixed k, that occur in the presentation of the string,
Slide $34 \quad$ distinguishing multiplicities only up to some fixed threshold t.
- If the strings are presented as sequences of events in time, then this corresponds to being able count up to some fixed threshold.
- Any cognitive mechanism that is sensitive only to the multiplicity, up to some fixed threshold, (and, in particular, not to the order) of the length k blocks of events in the presentation of a string will be able to recognize only $\mathrm{FO}(+1)$ stringsets.

Yidin is not $\mathbf{F O}(+1)$

Slide 36

- no- H-before- H is not $\mathrm{FO}(+1)$
- One- σ is $\mathrm{FO}(+1)$
- No- H-with- \dot{L} is LT.
- $(\sigma \grave{\sigma})^{*}$, Nothing-before- \grave{L}, and L-follows- L are all SL_{2}.

Long-Distance Dependencies

Sarcee sibilant harmony:
[-anterior] sibilants do not occur after [+anterior] sibilants
a. /si-t \int iz-a?/ \rightarrow fít $\int i ́ d z a ̀ ? ~ ' m y ~ d u c k ' ~$
b. /na-s-yat \int / \rightarrow nā \int yát \int 'I killed them again'

Slide 37
c. cf. \star sít $\int i ́ d z a ̀ ?$

$$
\overline{\Sigma^{*} \cdot[+] \cdot \Sigma^{*} \cdot[-] \cdot \Sigma^{*}}
$$

Samala (Chumash) sibilant harmony:
[-anterior] sibilants do not occur in the same word as [+anterior] sibilants
[f tojonowonowa $]$ 'it stood upright' $*[$ [fojonowonowas]

$$
\overline{\left(\Sigma^{*} \cdot[+] \cdot \Sigma^{*} \cdot[-] \cdot \Sigma^{*}\right)+\left(\Sigma^{*} \cdot[-] \cdot \Sigma^{*} \cdot[+] \cdot \Sigma^{*}\right)}
$$

Complexity of Sibilant Harmony

(Samala and Sarcee)

Symmetric sibilant harmony is LT

Slide 38

$$
\neg([+] \wedge[-])
$$

Asymmetric sibilant harmony is not $\mathbf{F O}(+1)$

$$
\begin{gathered}
\star w[-] w[+] w \ltimes \\
\equiv{ }_{k, t}^{L} \\
\star \rtimes w[-] w[+] w[-] w \ltimes
\end{gathered}
$$

Precedence-Subsequences

Definition 8 (Subsequences)

$$
v \sqsubseteq w \stackrel{\text { def }}{\Longleftrightarrow} v=\sigma_{1} \cdots \sigma_{n} \text { and } w \in \Sigma^{*} \cdot \sigma_{1} \cdot \Sigma^{*} \cdots \Sigma^{*} \cdot \sigma_{n} \cdot \Sigma^{*}
$$

$$
P_{k}(w) \stackrel{\text { def }}{=}\left\{v \in \Sigma^{k} \mid v \sqsubseteq w\right\}
$$

$$
P_{\leq k}(w) \stackrel{\text { def }}{=}\left\{v \in \Sigma^{\leq k} \mid v \sqsubseteq w\right\}
$$

$P_{2}(\sigma \sigma \sigma ́ \sigma \grave{\sigma} \sigma)=\{\sigma \sigma, \sigma \dot{\sigma}, \sigma \grave{\sigma}, \sigma \sigma \sigma, \sigma \dot{\sigma}, \grave{\sigma} \sigma\}$

$$
P_{\leq 2}(\sigma \sigma \sigma ́ \sigma \grave{\sigma} \sigma)=\{\varepsilon, \sigma, \sigma, \grave{\sigma}, \sigma \sigma, \sigma \dot{\sigma}, \sigma \grave{\sigma}, \sigma \sigma, \sigma \grave{\sigma}, \grave{\sigma} \sigma\}
$$

Strictly Piecewise Stringsets-SP

Strictly k-Piecewise Definitions

$$
\begin{gathered}
\mathcal{G} \subseteq \Sigma^{\leq k} \\
w \models \mathcal{G} \stackrel{\text { def }}{\Longleftrightarrow} P_{\leq k}(w) \subseteq P_{\leq k}(\mathcal{G}) \\
L(\mathcal{G}) \stackrel{\text { def }}{=}\left\{w \in \Sigma^{*} \mid w \models \mathcal{G}\right\} \\
\mathcal{G}_{\text {No- } H \text {-before- }-\dot{H}}=\{H H, H \grave{H}, \grave{H} H, \grave{H} \grave{H}, \dot{H} H, \dot{H} \grave{H}, \ldots\} \\
\underbrace{*}_{\underbrace{\underbrace{L L H} L H}} L L \overbrace{H L H}^{*} L
\end{gathered}
$$

Slide 40

Membership in an SP_{k} stringset depends only on the individual ($\leq k$)-subsequences which do and do not occur in the string.

Character of the Strictly k-Piecewise Sets

Theorem 5 A stringset L is Strictly k-Piecewise Testable iff, for all $w \in \Sigma^{*}$,

$$
P_{\leq k}(w) \subseteq P_{\leq k}(L) \Rightarrow w \in L
$$

Consequences:
Slide 41

$$
\begin{array}{ll}
\text { Subsequence Closure: } & w \sigma v \in L \Rightarrow w v \in L \\
\text { Unit Strings: } & P_{1}(L) \subseteq L \\
\text { Empty String: } & L \neq \emptyset \Rightarrow \varepsilon \in L
\end{array}
$$

Every naturally occurring stress pattern requires Primary Stress \Rightarrow
No naturally occurring stress pattern is SP.
But SP can forbid multiple primary stress: $\neg \sigma ́ \sigma ́$

SP Hierarchy

Definition 9 (SP)
A stringset is Strictly k-Piecewise if it is definable with an $S P_{k}$ definition.

A stringset is Strictly Piecewise (in $S P$) if it is $S P_{k}$ for some k.
Theorem 6 (SP-Hierarchy)
Slide 42

$$
S P_{2} \subsetneq S P_{3} \subsetneq \cdots \subsetneq S P_{i} \subsetneq S P_{i+1} \subsetneq \cdots \subsetneq S P
$$

SP is incomparable (wrt subset) with the Local Hierarchy

$$
\begin{aligned}
\mathrm{SP}_{2} \nsubseteq \mathrm{FO}(+1) & \mathrm{No}-H \text {-before- }-\dot{H} \in \mathrm{SP}_{2}-\mathrm{FO}(+1) \\
\mathrm{SL}_{2} \nsubseteq \mathrm{SP} & (\sigma \grave{\sigma})^{*} \in \mathrm{SL}_{2}-\mathrm{SP} \\
\mathrm{SP}_{2} \cap \mathrm{SL}_{2} \neq \emptyset & A^{*} B^{*} \in \mathrm{SP}_{2} \cap \mathrm{SL}_{2}
\end{aligned}
$$

Fin $\nsubseteq \mathrm{SP} \quad\{A\} \in \mathrm{Fin}-\mathrm{SP}$

Sarcee Sibilant Harmony is $\mathbf{S P}_{\mathbf{2}}$

$$
\{\ldots,[-][-],[-][+],[+][+], \ldots\}
$$

Yidin constraints wrt SP

Slide 44

- No- H-before- H is SP_{2} : Forbid $H H^{\prime}$
- Nothing-before- \dot{L} is SP_{2} : Forbid $\Sigma \dot{L}$
- One- σ is not SP :
$\star \sigma \sigma \grave{\sigma} \sqsubseteq \sigma \sigma \sigma \sigma \frac{\sigma}{}$
- $(\sigma \grave{\sigma})^{*}$ is not SP:
$\star \sigma \sigma \grave{\sigma} \sqsubseteq \sigma \grave{\sigma} \sigma \grave{\sigma}$
- L-follows- \dot{L} is not SP:
* $\dot{L} \grave{L} \sqsubseteq$ ĹLL̀

Cognitive interpretation of SP

- Any cognitive mechanism that can distinguish member strings from non-members of an SP_{k} stringset must be sensitive, at least, to the length k (not necessarily consecutive) sequences of events that occur in the presentation of the string.

Slide 45

- If the strings are presented as sequences of events in time, then this corresponds to being sensitive, at each point in the string, to up to $k-1$ events distributed arbitrarily among the prior events.
- Any cognitive mechanism that is sensitive only to the length k sequences of events in the presentation of a string will be able to recognize only SP_{k} stringsets.

k-Piecewise Testable Stringsets

PT_{k}-expressions

$$
\begin{array}{rrl}
p \in \Sigma \leq k & w \models p & \stackrel{\text { def }}{\Longleftrightarrow} p \sqsubseteq w \\
\varphi \wedge \psi & w \models \varphi \wedge \psi & \stackrel{\text { def }}{\Longleftrightarrow} w \models \varphi \text { and } w \models \psi \\
\neg \varphi & w \models \neg \varphi & \stackrel{\text { def }}{\Longleftrightarrow} w \not \models \varphi
\end{array}
$$

Slide 46
k-Piecewise Testable Languages $\left(\mathrm{PT}_{k}\right)$:

$$
\begin{gathered}
L(\varphi) \stackrel{\text { def }}{=}\left\{w \in \Sigma^{*} \mid w \models \varphi\right\} \\
\text { One- } \sigma=L(\dot{\sigma} \wedge \neg \sigma ́ \sigma)
\end{gathered}
$$

Membership in an PT_{k} stringset depends only on the set of ($\leq k$)-subsequences which occur in the string.
SP_{k} is equivalent to $\bigwedge_{p_{i} \notin \mathcal{G}}\left[\neg p_{i}\right]$

Character of Piecewise Testable sets

Theorem 7 (k-Subsequence Invariance) A stringset L is Piecewise Testable iff

Slide 47
there is some k such that, for all strings x and y,
if x and y have exactly the same set of $(\leq k)$-subsequences
then either both x and y are members of L or neither is.

$$
w \equiv_{k}^{P} v \stackrel{\operatorname{def}}{\Longleftrightarrow} P_{\leq k}(w)=P_{\leq k}(v)
$$

PT Hierarchy

Definition 10 (SP)

A stringset is k-Piecewise Testable if it is definable with an $P T_{k}$
Slide 49 definition.

A stringset is Piecewise Testable (in $P T$) if it is $P T_{k}$ for some k.
Theorem 8 (PT-Hierarchy)

$$
P T_{2} \subsetneq P T_{3} \subsetneq \cdots \subsetneq P T_{i} \subsetneq P T_{i+1} \subsetneq \cdots \subsetneq P T
$$

PT, SP and the Local Hierarchy

$$
\begin{aligned}
\mathrm{SP}_{k} \subsetneq \mathrm{PT}_{k} & \\
\mathrm{SP}_{k+1} \nsubseteq \mathrm{PT}_{k} & \\
\mathrm{PT}_{2} \nsubseteq \mathrm{SP} & \text { One- } \dot{H} \in \mathrm{PT}_{2}-\mathrm{SP} \\
\mathrm{PT}_{2} \nsubseteq \mathrm{FO}(+1) & \text { No- } H \text {-before- } \dot{H} \in \mathrm{PT}_{2}-\mathrm{FO}(+1) \\
\mathrm{SL}_{2} \nsubseteq \mathrm{PT} & (\sigma \grave{\sigma})^{*} \in \mathrm{SL}_{2}-\mathrm{PT} \\
\mathrm{PT}_{2} \cap \mathrm{SL}_{2} \neq \emptyset & A^{*} B^{*} \in \mathrm{PT}_{2} \cap \mathrm{SL}_{2}
\end{aligned}
$$

Fin $\subseteq \mathrm{SP}:$

$$
\begin{aligned}
\Sigma^{*}=L(\varepsilon), \quad \emptyset & =L(\neg \varepsilon), \quad\{\varepsilon\}=L\left(\bigwedge_{\sigma \in \Sigma}[\neg \sigma]\right), \\
\{w\} & =L\left(w \wedge \bigwedge_{p \in \Sigma^{|w|+1}}[\neg p]\right) \\
\left\{w_{1}, \ldots, w_{n}\right\} & =L\left(\bigvee_{1 \leq i \leq n}\left[w_{i} \wedge \bigwedge_{p \in \Sigma^{\left|w_{i}\right|+1}}[\neg p]\right]\right)
\end{aligned}
$$

Cognitive interpretation of PT

- Any cognitive mechanism that can distinguish member strings from non-members of an PT_{k} stringset must be sensitive, at least, to the set of length k subsequences of events that occur in the presentation of the string-both those that do occur and

Slide 51

First-Order $(<)$ definable stringsets

$$
\left\langle\mathcal{D}, \triangleleft^{+}, P_{\sigma}\right\rangle_{\sigma \in \Sigma}
$$

First-order Quantification over positions in the strings
$x \triangleleft^{+} y \quad w,[x \mapsto i, y \mapsto j] \models x \triangleleft^{+} y \quad \stackrel{\text { def }}{\Longleftrightarrow} i<j$
$P_{\sigma}(x) \quad w,[x \mapsto i] \models P_{\sigma}(x) \stackrel{\text { def }}{\Longleftrightarrow} i \in P_{\sigma}$
$\varphi \wedge \psi \quad \vdots$
$\neg \varphi \quad \vdots$
$(\exists x)[\varphi(x)] \quad w, s \models(\exists x)[\varphi(x)] \quad \stackrel{\operatorname{def}}{\Longleftrightarrow} w, s[x \mapsto i] \models \varphi(x)]$
for some $i \in \mathcal{D}$

PT, $\mathbf{F O}(+1)$ and $\mathbf{F O}(<)$

Theorem $9 P T \subsetneq F O(<)$.

$$
\begin{gathered}
\sigma_{1} \cdots \sigma_{n} \sqsubseteq w \Leftrightarrow\left(\exists x_{1}, \ldots, x_{n}\right)\left[\bigwedge_{1 \leq i<j \leq n}\left[x_{i} \triangleleft^{+} x_{j}\right] \wedge \bigwedge_{1 \leq i \leq n}\left[P_{\sigma_{i}}\left(x_{i}\right)\right]\right] \\
(\sigma \grave{\sigma})^{*} \subseteq \mathrm{FO}(<)-\mathrm{PT}
\end{gathered}
$$

Theorem 10 $F O(+1) \subsetneq F O(<)$.
+1 is FO definable from $<$:

$$
\begin{gathered}
x \triangleleft y \equiv x \triangleleft^{+} y \wedge \neg(\exists z)\left[x \triangleleft^{+} z \wedge z \triangleleft^{+} y\right] \\
\text { No- } H \text {-before- } H \subseteq \mathrm{FO}(<)-\mathrm{FO}(+1)
\end{gathered}
$$

Star-Free stringsets

Definition 11 (Star-Free Set) The class of Star-Free Sets (SF)
is the smallest class of languages satisfying:

Slide 54

- $F i n \subseteq S F$.
- If $L_{1}, L_{2} \in S F$ then: $L_{1} \cdot L_{2} \in S F$,

$$
L_{1} \cup L_{2} \in S F
$$

$$
\overline{L_{1}} \in S F
$$

Theorem 11 (McNauthton and Papert) A set of strings is First-order definable over $\left\langle\mathcal{D}, \triangleleft^{+}, P_{\sigma}\right\rangle_{\sigma \in \Sigma}$ iff it is Star-Free.

PT and LT with Order

$\varphi \bullet \psi \quad w \models \varphi \bullet \psi \stackrel{\text { def }}{\Longleftrightarrow} w=w_{1} \cdot w_{2}, \quad w_{1} \models \varphi$ and $w_{2} \models \psi$.
LTO_{k} is LT_{k} plus $\varphi \bullet \psi$

$$
\text { No- } H \text {-before- } \mathcal{H}^{\prime}=L((\neg H) \bullet(\neg \dot{H})) \in \mathrm{LTO}
$$

Slide 55
PTO_{k} is PT_{k} plus $\varphi \bullet \psi$
Let:

$$
\begin{gathered}
\varphi_{A=i}=A^{i} \wedge \bigwedge_{p \in \Sigma^{i+1}}[\neg p], \\
L\left(\varphi_{A^{=i}}\right)=\left\{A^{i}\right\}
\end{gathered} \quad L\left(\varphi_{\Sigma^{*}}\right)=\varepsilon \Sigma^{*} \text {. }
$$

Then:

$$
\begin{aligned}
&(\sigma \grave{\sigma})^{*}=\quad L\left(\neg\left(\varphi_{\grave{\sigma}=1} \bullet \varphi_{\Sigma^{*}}\right) \wedge \neg\left(\varphi_{\Sigma^{*}} \bullet \varphi_{\sigma^{=1}}\right) \wedge\right. \\
&\left.\neg\left(\varphi_{\Sigma^{*}} \bullet \varphi_{\sigma^{=2}} \bullet \varphi_{\Sigma^{*}}\right) \wedge \neg\left(\varphi_{\Sigma^{*}} \bullet \varphi_{\grave{\sigma}=2} \bullet \varphi_{\Sigma^{*}}\right)\right) \in \mathrm{PTO}
\end{aligned}
$$

PTO, LTO and SF

Theorem 12

$$
P T O=S F=L T O
$$

$\mathbf{S F} \subseteq \mathbf{P T O}, \mathbf{S F} \subseteq \mathbf{L T O}$
Fin \subseteq PTO, Fin \subseteq LTO and both are closed under concatenation, union and complement.
$\mathbf{L T O} \subseteq \mathbf{P T O} \subseteq \mathbf{S F}$

Concatenation is $\mathrm{FO}(<)$ definable.

Yidin is $\mathrm{FO}(<)$

Slide 57

- No- H-before- $-\dot{H}$ is SP_{2} :

Forbid HH́

- Nothing-before- $-\dot{L}$ is SP_{2} :

Forbid $\Sigma \dot{L}$

- One- σ is PT_{2} :

Require $\dot{\sigma}$, Forbid $\dot{\sigma} \boldsymbol{\sigma}$

- $(\sigma \grave{\sigma})^{*}$ is SL_{2} :
$\{\rtimes \sigma, \sigma \grave{\sigma}, \grave{\sigma} \sigma, \grave{\sigma} \ltimes\}$
- L-follows- $-\dot{L}$ is SL_{2} : $\neg\left\{\dot{L} H, \dot{L} \dot{H}, L \dot{L} \dot{H}, \dot{L} \grave{L}, L^{L} L ́\right\}$

Yidin is $\mathrm{SL}_{2} \cap \mathrm{PT}_{2}$.
Yidin is $\mathrm{LT}_{2} \cap \mathrm{SP}_{2}$.

Character of $\mathrm{FO}(<)$ definable sets

Theorem 13 (McNaughton and Papert) A stringset L is definable by a set of First-Order formulae over strings iff it is recognized by a finite-state automaton that is non-counting (that has an aperiodic syntactic monoid), that is, iff:

Slide 58
there exists some $n>0$ such that
for all strings u, v, w over Σ
if $u v^{n} w$ occurs in L
then $u v^{n+i} w$, for all $i \geq 1$, occurs in L as well.
E.g.

$$
\begin{array}{rc}
\text { \{people (who were left by people) } \left.)^{n} \text { left }\right\} & \in L \\
\hline\left\{\text { people }(\text { who were left by people })^{n+1} \text { left }\right\} & \in L
\end{array}
$$

Cognitive interpretation of $\mathrm{FO}(<)$

- Any cognitive mechanism that can distinguish member strings from non-members of an $\mathrm{FO}(<)$ stringset must be sensitive, at least, to the sets of length k blocks of events, for some fixed k, that occur in the presentation of the string when it is factored into segments, up to some fixed number, on the basis of those

Slide 59 sets with distinct criteria applying to each segment.

- If the strings are presented as sequences of events in time, then this corresponds to being able to count up to some fixed threshold with the counters being reset some fixed number of times based on those counts.
- Any cognitive mechanism that is sensitive only to the sets of length k blocks of events in the presentation of a string once it has been factored in this way will be able to recognize only $\mathrm{FO}(<)$ stringsets.

MSO definable stringsets

Slide 60
$\left\langle\mathcal{D}, \triangleleft, \triangleleft^{+}, P_{\sigma}\right\rangle_{\sigma \in \Sigma}$
First-order Quantification (positions)
Monadic Second-order Quantification (sets of positions)
\triangleleft^{+}is MSO-definable from \triangleleft.

MSO example

$$
\begin{aligned}
\left(\exists X_{0}, X_{1}\right)[& (\forall x)\left[(\exists y)[y \triangleleft x] \vee X_{0}(x)\right] \wedge \\
& (\forall x, y)\left[\neg\left(X_{0}(x) \wedge X_{1}(x)\right)\right] \wedge \\
& (\forall x, y)\left[x \triangleleft y \rightarrow\left(X_{0}(x) \leftrightarrow X_{1}(y)\right] \wedge\right. \\
& (\forall x)\left[(\exists y)[x \triangleleft y] \vee X_{1}(x)\right]
\end{aligned}
$$

Theorem 14 (Chomsky Schützenberger) A set of strings is Regular iff it is a homomorphic image of a Strictly 2-Local set.

Definition 12 (Nerode Equivalence) Two strings w and v are Nerode Equivalent with respect to a stringset L over Σ (denoted $w \equiv_{L} v$) iff for all strings u over $\Sigma, w u \in L \Leftrightarrow v u \in L$.
Slide 62
Theorem 15 (Myhill-Nerode) A stringset L is recognizable by a FSA (over strings) iff \equiv_{L} partitions the set of all strings over Σ into finitely many equivalence classes.

Theorem 16 (Medvedev, Büchi, Elgot) A set of strings is $M S O$-definable over $\left\langle\mathcal{D}, \triangleleft, \triangleleft^{+}, P_{\sigma}\right\rangle_{\sigma \in \Sigma}$ iff it is regular.

Theorem $17 M S O=\exists M S O$ over strings.

Cognitive interpretation of Finite-state

- Any cognitive mechanism that can distinguish member strings from non-members of a finite-state stringset must be capable of classifying the events in the input into a finite set of abstract categories and are sensitive to the sequence of those categories.

Slide 63

- Subsumes any recognition mechanism in which the amount of information inferred or retained is limited by a fixed finite bound.
- Any cognitive mechanism that has a fixed finite bound on the amount of information inferred or retained in processing sequences of events will be able to recognize only finite-state stringsets.

Hindi (Kelkar)

Slide 64

Local and Piecewise Hierarchies

Complexity of some phonological constraints

Slide 66

		$\begin{aligned} & \mathrm{MSO} \\ & (\mathrm{Reg}) \end{aligned}$	Hindi (Kellkar)?		
		$\begin{aligned} & \mathrm{FO}(<) \\ & (\mathrm{SF}) \end{aligned}$	(Yidin)		
$\mathrm{FO}(+1)$?				
LT				PT	
LT_{2}	Some- σ, Symmetric SH	$\mathrm{LT}_{2} \cap \mathrm{PT}_{2}$	Yidin	PT_{2}	One-ब́
SL				SP	
SL_{6}	72\%				
SL_{4}	Arabic (Cariene)				
SL_{3}	$\star C C C,$ Alawa, Arabic (Bani-Hassan), 49\%				
SL_{2}	Cambodian			SP_{2}	Asymmetric SH, No- H-before- H, Nothing-before- $-\dot{L}$

Slide 68

Strictly k-Local Languages $\left(\mathrm{SL}_{k}\right)$

$T_{\mathcal{M}} \stackrel{\text { def }}{=}\left\{v \sigma \in F_{k}\left(\rtimes \cdot \Sigma^{*} \cdot \ltimes\right) \mid \delta(v, \sigma) \downarrow\right\}$
$L(\mathcal{M})=\left\{w \in \Sigma^{*} \mid F_{k}(w) \subseteq T_{\mathcal{M}}\right\}$
$L \in \mathrm{SL}_{k} \stackrel{\text { def }}{\Longleftrightarrow} L$ is $L(\mathcal{M})$ for some k-scanner \mathcal{M}

$$
L \in \mathrm{SL} \stackrel{\text { def }}{\Longleftrightarrow}(\exists k)\left[L \in \mathrm{SL}_{k}\right]
$$

Subsequences

v is a subsequence of w :

$$
\begin{gathered}
v \sqsubseteq w \stackrel{\text { def }}{\Longleftrightarrow} v=\sigma_{1} \cdots \sigma_{k} \text { and } w \in \Sigma^{*} \cdot \sigma_{1} \cdot \Sigma^{*} \cdots \Sigma^{*} \cdot \sigma_{k} \cdot \Sigma^{*} \\
P_{k}(w) \stackrel{\text { def }}{=}\left\{v \in \Sigma^{k} \mid v \sqsubseteq w\right\} \quad P_{\leq k}(w) \stackrel{\text { def }}{=} \bigcup_{0<i \leq k}\left[P_{i}(w)\right] \\
P_{k}^{M}(w) \stackrel{\text { def }}{=}\{v \sqsubseteq w\}
\end{gathered}
$$

Would like:

$$
\operatorname{Pr}_{L}(w)=\prod_{v \cdot \sigma \in P_{\leq k}^{M}(w)}\left[\operatorname{Pr}_{L}(\sigma \mid v)\right]
$$

Slide 70

Initial Model

Let $w=v \cdot \sigma \cdot u, q=\hat{\delta}(\{\varepsilon\}, v)$:

$$
T(q, \sigma)=\operatorname{Pr}_{L}\left(\sigma \mid P_{\leq k}(v)=q\right)
$$

PT-Automata

Piecewise-Testable Languages (PT)

$$
\operatorname{SI}(w) \stackrel{\text { def }}{=}\left\{v \in \Sigma^{*} \mid w \sqsubseteq v\right\}
$$

L is Piecewise Testable $\stackrel{\text { def }}{\Longleftrightarrow} L$ is a finite Boolean combination of principal shuffle ideals.

Slide 72
P_{k}-expressions
Atoms $v \in P_{\leq k}\left(\Sigma^{*}\right)$

$$
w \models v \stackrel{\operatorname{def}}{\Longleftrightarrow} w \in \operatorname{SI}(v) \quad \text { (i.e., } v \sqsubseteq w)
$$

Operators Truth functional connectives
$L \in \mathrm{PT}_{k} \Leftrightarrow L=\left\{w \in \Sigma^{*} \mid w \models \varphi\right\}$ for some P_{k}-expression φ

PT-Automata and P_{k}-expressions

Slide 73

Strictly Piecewise Testable Languages (SP)

The following are equivalent:

1. $L \in \mathrm{SP}$
2. L is the set of strings satisfying a finite conjunction of negative P_{k}-literals.
3. $L=\bigcap_{w \in S}[\overline{\mathrm{SI}(w)}], S$ finite,
4. $(\exists k)\left[P_{\leq k}(w) \subseteq P_{\leq k}(L) \Rightarrow w \in L\right]$,
5. $w \in L$ and $v \sqsubseteq w \Rightarrow v \in L$ (L is subsequence closed),
6. $L=\overline{\mathrm{SI}(X)}, X \subseteq \Sigma^{*}$ (L is the complement of a shuffle ideal).

DFA representation of $\mathrm{SP}_{\boldsymbol{k}}$ languages

Let \mathcal{M} be a trimmed minimal DFA recognizing an SP_{k} language. Then:

Slide 75

1. All states of \mathcal{M} are accepting states.
2. If $\delta(q, \sigma) \uparrow$ then there is some $s \in P_{\leq k}\left(\left\{w \mid \hat{\delta}\left(q_{0}, w\right)=q\right\}\right)$ such that for all $q^{\prime} \in Q s \in P_{\leq k}\left(\left\{w \mid \hat{\delta}\left(q_{0}, w\right)=q^{\prime}\right\}\right) \Rightarrow \delta(q, \sigma) \uparrow$
Consequently, for all $q_{1}, q_{2} \in Q$ and $\sigma \in \Sigma$, if $\delta\left(q_{1}, \sigma\right) \uparrow$ and $\hat{\delta}\left(q_{1}, w\right)=q_{2}$ for some $w \in \Sigma^{*}$ then $\delta\left(q_{2}, \sigma\right) \uparrow$.
(Missing edges propagate down.)

SP_{k}-automata

Slide 76

Size of automaton: $\Theta\left(2^{\operatorname{card}(\Sigma)^{k}}\right)$

Factored $\mathbf{S P}_{k}$-automata

Slide 77

Slide 78

Product PDFAs

Co-emission Probability

$$
\begin{gathered}
\mathrm{CT}\left(\left\langle\sigma, q_{1} \ldots q_{n}\right\rangle\right)=\Pi_{i=1}^{n} T_{i}\left(q_{i}, \sigma\right) \\
\mathrm{CF}\left(\left\langle q_{1} \ldots q_{n}\right\rangle\right)=\Pi_{i=1}^{n} F_{i}\left(q_{i}\right) \\
Z\left(\left\langle q_{1} \ldots q_{n}\right\rangle\right)=\mathrm{CF}\left(\left\langle q_{1} \ldots q_{n}\right\rangle\right)+\sum_{\sigma \in \Sigma} \mathrm{CT}\left(\left\langle\sigma, q_{1} \ldots q_{n}\right\rangle\right) \\
F\left(\left\langle q_{1} \ldots q_{n}\right\rangle\right)=\frac{\mathrm{CF}\left(\left\langle q_{1} \ldots q_{n}\right\rangle\right)}{Z\left(\left\langle q_{1} \ldots q_{n}\right\rangle\right)} \\
T\left(\left\langle q_{1} \ldots q_{n}\right\rangle, \sigma\right)=\frac{\mathrm{CT}\left(\left\langle\sigma, q_{1} \ldots q_{n}\right\rangle\right)}{Z\left(\left\langle q_{1} \ldots q_{n}\right\rangle\right)}
\end{gathered}
$$

Product PDFAs- k-sets

Positive Co-emission Probability

$$
\begin{gathered}
\operatorname{PCT}\left(\left\langle\sigma, q_{\epsilon} \ldots q_{u}\right\rangle\right)=\prod_{\substack{q_{w} \in\left\langle q_{\epsilon} \ldots q_{u}\right\rangle \\
q_{w}=w}} T_{w}\left(q_{w}, \sigma\right) \\
\operatorname{PCF}\left(\left\langle q_{\epsilon} \ldots q_{u}\right\rangle\right)=\prod_{\substack{q_{w} \in\left\langle q_{\epsilon} \ldots q_{u}\right\rangle \\
q_{w}=w}} F_{w}\left(q_{w}\right) \\
Z\left(\left\langle q_{1} \ldots q_{n}\right\rangle\right)=\operatorname{PCF}\left(\left\langle q_{1} \ldots q_{n}\right\rangle\right)+\sum_{\sigma \in \Sigma} \operatorname{PCT}\left(\left\langle\sigma, q_{1} \ldots q_{n}\right\rangle\right)
\end{gathered}
$$

Let $q=\langle\epsilon, \epsilon, b, a a, a, b a, b\rangle$:

$$
\begin{aligned}
\mathrm{CT}(a, q)= & T_{\epsilon}(\epsilon, a) \cdot T_{a}(\epsilon, a) \cdot T_{b}(b, a) \cdot \\
& T_{a a}(a a, a) \cdot T_{a b}(a, a) \cdot T_{b a}(b a, a) \cdot T_{b b}(b, a) \\
\operatorname{PCT}(a, q)= & T_{\epsilon}(\epsilon, a) \cdot T_{b}(b, a) \cdot T_{a a}(a a, a) \cdot T_{b a}(b a, a)
\end{aligned}
$$

Complexity

Number of automata:

$$
\sum_{0 \leq i<k}\left[\operatorname{card}(\Sigma)^{i}\right]=\Theta\left(\operatorname{card}(\Sigma)^{k-1}\right)
$$

Number of states:

$$
\sum_{0 \leq i<k}\left[(i+1) \operatorname{card}(\Sigma)^{i}\right]=\Theta\left(k \operatorname{card}(\Sigma)^{k-1}\right)
$$

ML estimation $n=\sum_{w \in S}[|w|]$-size of corpus

$$
\Theta\left(n \operatorname{card}(\Sigma)^{k-1}\right) \quad(\text { v.s. } \Theta(n))
$$

$\operatorname{Pr}_{L}(w)$

$$
\Theta\left(n \operatorname{card}(\Sigma)^{k-1}\right) \quad(\text { v.s. } \Theta(n))
$$

Parameters Only final states matter

$$
\operatorname{card}(\Sigma) \Theta\left(\operatorname{card}(\Sigma)^{k-1}\right)=\Theta\left(\operatorname{card}(\Sigma)^{k}\right) \quad(\text { Same })
$$

Remaining issues

- Estimation undercounts
- counts number of k-sequences that start with first prefix- $\Theta(n)$
- actual number $\binom{n}{k} \in \Theta\left(2^{n}\right)$.

Slide 82

- Want probability to depend on multiset of subsequences
- infinitely many states
- but probability of n occurrences is (probability of occurrence) ${ }^{n}$
- same number of parameters/still linear time
- Not Regular distribution
- Not clear that there is a corresponding class of distributions over strings

Summary

SP-Distributions

- Regular distribution

Model (some) long distance dependencies
Slide 83

- Asymptotic complexity same as SL-distributions (n-gram models)
- SL-distributions can't model long distance dependencies SP-distributions can't model local ones
- Both are classes of Regular distributions

Combination is straightforward

Samala Corpus

- 4800 words drawn from Applegate 2007, generously provided in electronic form by Applegate (p.c).

	labial	coronal	a.palatal	velar	uvular	glottal
stop	p p ${ }^{\text {p }}{ }^{\text {h }}$	$\mathrm{t} \mathrm{t}^{2} \mathrm{t}^{\mathrm{h}}$		$\mathrm{k} \mathrm{k}^{2} \mathrm{k}^{\mathrm{h}}$	$\mathrm{q} \mathrm{q}^{2} \mathrm{q}^{\text {h }}$?
affricates		ts $\mathrm{ts}^{2} \mathrm{ts}^{\text {h }}$				
fricatives		$\mathrm{s} \mathrm{s}^{\text {? }} \mathrm{s}^{\text {h }}$	$\iint^{?} \int^{\text {h }}$	$\mathrm{x} \mathrm{x}^{\text {? }}$		h
nasal	m	$\mathrm{n} \mathrm{n}^{\text {? }}$				
lateral		$11^{?}$				
approx.	w	y				

6 Vowels

i	i	u
e		o
	a	

Samala: results of SP2 estimation

Slide 85

$P(x \mid\{y\}<)$		x			
		t ${ }^{\text {f }}$	\int	ts	s
y	t	0.0313	0.0455	0.	0.0006
	J	0.0353	0.0671	0.	0.0009
	ts	0.	0.0009	0.0113	0.0218
	s	0.0002	0.0011	0.0051	0.0335

(Collapsing laryngeal distinctions)

Finnish: Corpus

- 44,040 words from Goldsmith and Riggle (to appear)
19 Consonants

	lab.	lab.dental	cor.	pal.	velar	uvular	glottal
stop	p b		t d	c	k g	q	
fricatives		f v	s		x		h
nasal	m		n				
lateral			l				
rhotic			r				
approx.	w		j				

8 Vowels

-back	+back		
i	y	u	Back vowels and front vowels don't mix
e	oe		o
ae		a	

Results of SP2 Estimation

Slide 87

$P(b \mid\{c\}<)$		b							
		i	e	y	oe	ae	u	o	a
c	i	0.092	0.08	0.012	0.006	0.026	0.033	0.033	0.099
	e	0.094	0.073	0.014	0.005	0.032	0.035	0.028	0.082
	y	0.092	0.071	0.047	0.03	0.066	0.015	0.017	0.039
	oe	0.097	0.067	0.029	0.014	0.053	0.023	0.026	0.059
	ae	0.095	0.077	0.038	0.015	0.09	0.015	0.015	0.036
	u	0.086	0.07	0.006	0.002	0.007	0.059	0.045	0.12
	o	0.111	0.071	0.005	0.002	0.007	0.047	0.034	0.121
	a	0.099	0.063	0.005	0.002	0.007	0.049	0.035	0.134

