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Contrast: ⋆ C2i+1

Definition 1 A finite-state stringset is one in which there is an a

priori bound, independent of the length of the string, on the amount

of information that must be inferred in distinguishing strings in the

set from those not in the set.

Regular = Recognizable = Finite-State
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Cognitive Complexity from First Principles

What kinds of distinctions does a cognitive mechanism need to be

sensitive to in order to classify an event with respect to a pattern?

Reasoning about patterns

• What objects/entities/things are we reasoning about?

• What relationships between them are we reasoning with?
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Dual characterizations of complexity classes

Computational classes

• Characterized by abstract computational mechanisms

• Equivalence between mechanisms

• Means to determine structural properties of stringsets

Descriptive classes

• Characterized by the nature of information about the

properties of strings that determine membership

• Independent of mechanisms for recognition

• Subsume wide range of types of patterns
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Some Assumptions about Linguistic Behaviors

• Perceive/process/generate linear sequence of (sub)events

• Can model as strings—linear sequence of abstract symbols

– Discrete linear order (initial segment of N).

– Labeled with alphabet of events

Partitioned into subsets, each the set of positions at

which some event occurs.
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Word models
〈D, ⊳, ⊳+, Pσ〉σ∈Σ

(+1) 〈D, ⊳, Pσ〉σ∈Σ (<) 〈D, ⊳+, Pσ〉σ∈Σ

D — Finite

⊳+ — Linear order on D

⊳ — Successor wrt ⊳+

Pσ — Subset of D at which σ occurs

(Pσ partition D)

CCV C =
〈

{0, 1, 2, 3}, {〈i, i+ 1〉 | 0 ≤ i < 3}, {0, 1, 3}C , {2}V

〉
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Adjacency—Substrings

CVCVCV

Definition 2 (k-Factor)

v is a factor of w if w = uvx for some u, v ∈ Σ∗.

v is a k-factor of w if it is a factor of w and |v| = k.

Fk(w)
def
=







{v ∈ Σk | (∃u, x ∈ Σ∗)[w = uvx]} if |w| ≥ k,

{w} otherwise.

F2(CV CV CV ) = {CV, V C}

F7(CV CV CV ) = {CV CV CV }
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Strictly Local Stringsets—SL

Strictly k-Local Definitions

—Grammar is set of permissible k-factors

G ⊆ Fk({⋊} · Σ∗ · {⋉})

w |= G
def
⇐⇒ Fk(⋊ · w · ⋉) ⊆ G

L(G)
def
= {w | w |= G}

Definition 3 (Strictly Local Sets) A stringset L over Σ is

Strictly Local iff there is some strictly k-local definition G over Σ

(for some k) such that L is the set of all strings that satisfy G
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SL Hierarchy

Definition 4 (SL)

A stringset is Strictly k-Local if it is definable with an SLk

definition.

A stringset is Strictly Local (in SL) if it is SLk for some k.

Theorem 1 (SL-Hierarchy)

SL2 ( SL3 ( · · · ( SLi ( SLi+1 ( · · · ( SL

Every Finite stringset is SLk for some k: Fin ⊆ SL.

There is no k for which SLk includes all Finite languages.
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⋆ CCC is SL3

G¬CCC = F3({⋊} · Σ∗ · {⋉})−{CCC}

⋉ ⋉⋊ ⋊VCCVCV VCCCV

⋆

Membership in an SLk stringset depends only on the individual

k-factors which occur in the string.
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Scanners

QD

a b a b a b a b a babababa

k k

b

a

a

∈
φ

a

b

b

· · ·

· · ·

· · ·

· · ·

· · ·

k

a · · · b· · ·

G :

Recognizing an SLk stringset requires only remembering the k most

recently encountered symbols.
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Scanners as FSA

⋊

a

b

c

F

⋉

a

b

a
a

b
b

c

b

a

⋉

c

⋉

c

⋉

c

M
def
= 〈Q,Σ, q0, δ, F 〉

Q
def
= Fk−1({⋊} · Σ∗ · {⋉} ∪

⋃

0≤i<k−1[{⋊} · Σi]

qo
def
= ⋊

δ(σ · v, γ)
def
= v · γ, σ ∈ {⋊} ∪ Σ, γ ∈ Σ ∪ {⋉}

F
def
= {v · ⋉ | v · ⋉ ∈ Q}
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Character of Strictly k-Local Sets

Theorem (Suffix Substitution Closure):

A stringset L is strictly k-local iff whenever there is a string x of

length k − 1 and strings w, y, v, and z, such that

w ·

k−1
︷︸︸︷
x · y ∈ L

v · x · z ∈ L

then it will also be the case that

w · x · z ∈ L

E.g.: But ⋆ CCC is not SL2:

V · V C · CV ∈⋆ CCC

C · V C · V C ∈⋆ CCC

V · V C · V C ∈⋆ CCC

C · C · V C ∈⋆ CCC

V · C · CV ∈⋆ CCC

C · C · CV 6∈⋆ CCC
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Cognitive interpretation of SL

• Any cognitive mechanism that can distinguish member strings

from non-members of an SLk stringset must be sensitive, at

least, to the length k blocks of events that occur in the

presentation of the string.

• If the strings are presented as sequences of events in time, then

this corresponds to being sensitive, at each point in the string,

to the immediately prior sequence of k − 1 events.

• Any cognitive mechanism that is sensitive only to the length k

blocks of events in the presentation of a string will be able to

recognize only SLk stringsets.
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Cambodian

H̀

1

2

H́

L

⋊

Ĺ

⋉

0

H̀H́

H́
Ĺ

L
H̀
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Cambodian—Can’t start with a light syllable

H̀

1

2

H́

L

⋊

Ĺ

⋉

0

H̀H́

H́
Ĺ

L
H̀
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Cambodian—No light follows another light

H̀

1

2

H́

L

⋊

Ĺ

⋉

0

H̀H́

H́
Ĺ

L
H̀
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Cambodian—Must end on primary stress

H̀

1

2

H́

L

⋊

Ĺ

⋉

0

H̀H́

H́
Ĺ

L
H̀
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Alawa

2

1

0

4

3

σ́

σ

σ

σ

σ

σ́

⋊σ σ σ́σ⋉

⋊σ́ σ ⋉

⋆ ⋊σ σ ⋉

GAlawa = { ⋊σσ, ⋊σσ́, ⋊σ́σ,

σσσ, σσσ́, σσ́σ,

⋊σ́⋉, σ́σ⋉ }
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Arabic (Bani-Hassan)

6

7

3

4 1

8

2

5

0

σ0

σ1

σ1

σ́1

σ́2

σ0 σ0

σ0
σ0

σ1

σ́0

σ́0

σ́2

σ́1
σ̀1

σ̀2

σ̀1

σ̀2

σ́1

σ́2

σ̀0
σ0

σ̀1

σ̀2

σ̀0σ0

σ1

⋊σ0 σ́0 σ0⋉

⋊ σ́0 ⋉

⋆ ⋊σ0 σ́0 ⋉

GArabicBH =

{· · · }−{σσ́0⋉ | σ ∈ σ0, σ1, σ2}
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Arabic (Cairene)

4

2

3

1

0

5

σ0

σ1

σ́1

σ́2
σ́1

σ2

σ́2

σ0

σ1

σ0

σ1

σ0

σ1

σ1

σ2

σ́0

σ́0

σ0

⋊σ0 σ0σ0 σ́2⋉

⋊σ́0 σ0σ0 ⋉

⋆ ⋊σ0 σ0σ0 ⋉

GArabicCai =

{· · · }−{σσσ⋉ | σ ∈ σ0, σ1, σ2}

Slide 22

Arabic (Classical)

4

2

1

3

0

σ2

σ́1

σ2

σ1

σ́0
σ́1

σ0

σ1

σ́2

σ0

σ́2

σ0

σ1

σ0

σ1

⋊σ1

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 σ́2⋉

⋊σ́2

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 σ1⋉

⋆ ⋊σ1

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 σ1⋉
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Strictly Local Stress Patterns

Heinz’s Stress Pattern Database (ca. 2007)—109 patterns

9 are SL2 Abun West, Afrikans, . . . Cambodian,. . .

Maranungku

44 are SL3 Alawa, Arabic (Bani-Hassan),. . .

24 are SL4 Arabic (Cairene),. . .

3 are SL5 Asheninca, Bhojpuri, Hindi (Fairbanks)

1 is SL6 Icua Tupi

28 are not SL Amele, Bhojpuri (Shukla Tiwari), Ara-

bic Classical, Hindi (Keldar), Yidin,. . .

72% are SL, all k ≤ 6. 49% are SL3.
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The Problematic Case—Some-σ̀

3

1

0

2

σ̀

σ

σ

σ̀σ̀

σ̀

σ

σ́

σ́

⋊σ́

k−1
︷ ︸︸ ︷
σ · · ·σ σ̀⋉

⋊σ́σ̀

k−1
︷ ︸︸ ︷
σ · · ·σ σ⋉

⋆ σ́

k−1
︷ ︸︸ ︷
σ · · ·σ σ⋉
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Locally definable stringsets

f ∈ Fk(⋊ · Σ∗ · ⋉) w |= f
def
⇐⇒ f ∈ Fk(⋊ · w · ⋉)

ϕ ∧ ψ w |= ϕ ∧ ψ
def
⇐⇒ w |= ϕ and w |= ψ

¬ϕ w |= ¬ϕ
def
⇐⇒ w 6|= ϕ

Definition 5 (Locally Testable Sets) A stringset L over Σ is

Locally Testable iff (by definition) there is some k-expression ϕ

over Σ (for some k) such that L is the set of all strings that satisfy

ϕ:
L = L(ϕ)

def
= {w ∈ Σ∗ | w |= ϕ}

SLk ≡
∧

fi 6∈G

[¬fi] ( LTk
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Some-σ̀

3

1

0

2

σ̀

σ̀σ̀

σ̀

σ

σ́

σ́

σ

σ
ϕSome-σ̀ =

(⋊σ́ ∨ σ́⋉) Starts or ends with σ́

∧

σ̀ Some σ̀
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LT Automata

a

b

ba

b a

b b

a

b

aa

φ

Boolean
Network

a b a b a b a b a babababa

a a b b

Membership in an LTk stringset depends only on the set of

k-Factors which occur in the string.

Recognizing an LTk stringset requires only remembering which

k-factors occur in the string.
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Character of Locally Testable sets

Theorem 2 (k-Test Invariance) A stringset L is Locally

Testable iff

there is some k such that, for all strings x and y,

if ⋊ · x ·⋉ and ⋊ · y ·⋉ have exactly the same set of k-factors

then either both x and y are members of L or neither is.

w ≡L
k v

def
⇐⇒ Fk(⋊w⋉) = Fk(⋊v⋉).
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LT Hierarchy

Definition 6 (LT )

A stringset is k-Locally Testable if it is definable with an

LTk-expression.

A stringset is Locally Testable (in LT) if it is LTk for some k.

Theorem 3 (LT-Hierarchy)

LT2 ( LT3 ( · · · ( LTi ( LTi+1 ( · · · ( LT
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Cognitive interpretation of LT

• Any cognitive mechanism that can distinguish member strings

from non-members of an LTk stringset must be sensitive, at

least, to the set of length k blocks of events that occur in the

presentation of the string—both those that do occur and those

that do not.

• If the strings are presented as sequences of events in time, then

this corresponds to being sensitive, at each point in the string,

to the length k blocks of events that occur at any prior point.

• Any cognitive mechanism that is sensitive only to the set of

length k blocks of events in the presentation of a string will be

able to recognize only LTk stringsets.
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Arabic (Classical)

3

0

2

1

4

σ1

σ́2
σ́0

σ1

σ0

σ́1

σ0

σ́1

σ1

σ1

σ0

σ2

σ0

σ́2

σ2

⋊σ1

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 σ́1

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 ⋉

≡L
k

⋊σ1

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 σ́1

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 σ́1

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 ⋉
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FO(+1)

Models: 〈D, ⊳, Pσ〉σ∈Σ

First-order Quantification (over positions in the strings)

x ⊳ y w, [x 7→ i, y 7→ j] |= x ⊳ y
def
⇐⇒ j = i+ 1

Pσ(x) w, [x 7→ i] |= Pσ(x)
def
⇐⇒ i ∈ Pσ

ϕ ∧ ψ
...

¬ϕ
...

(∃x)[ϕ(x)] w, s |= (∃x)[ϕ(x)]
def
⇐⇒ w, s[x 7→ i] |= ϕ(x)]

for some i ∈ D

FO(+1)-Definable Stringsets: L(ϕ)
def
= {w | w |= ϕ}.

One-σ́ = L((∃x)[σ́(x) ∧ (∀y)[σ́(y) → x ≈ y] ])

Arabic (Classical) is FO(+1)
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Character of the FO(+1) Definable Stringsets

Definition 7 (Locally Threshold Testable) A set L is Locally

Threshold Testable (LTT) iff there is some k and t such that, for

all w, v ∈ Σ∗:

if for all f ∈ Fk(⋊ · w · ⋉) ∪ Fk(⋊ · v · ⋉)

either |w|f = |v|f or both |w|f ≥ t and |v|f ≥ t,

then w ∈ L ⇐⇒ v ∈ L.

Theorem 4 (Thomas) A set of strings is First-order definable

over 〈D, ⊳, Pσ〉σ∈Σ iff it is Locally Threshold Testable.

Membership in an FO(+1) definable stringset depends only on the

multiplicity of the k-factors, up to some fixed finite threshold,

which occur in the string.
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Cognitive interpretation of FO(+1)

• Any cognitive mechanism that can distinguish member strings

from non-members of an FO(+1) stringset must be sensitive, at

least, to the multiplicity of the length k blocks of events, for

some fixed k, that occur in the presentation of the string,

distinguishing multiplicities only up to some fixed threshold t.

• If the strings are presented as sequences of events in time, then

this corresponds to being able count up to some fixed threshold.

• Any cognitive mechanism that is sensitive only to the

multiplicity, up to some fixed threshold, (and, in particular, not

to the order) of the length k blocks of events in the presentation

of a string will be able to recognize only FO(+1) stringsets.
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Yidin

6

7

1

4

5

2

3

0

L
H́

LL̀

H́

H L̀

H̀

L

L̀

L̀

L

Ĺ

L

• Exactly one σ́ (One-σ́)

• First H gets primary stress

(No-H-before-H́)

• σ and σ̀ alternate ((σσ̀)∗)

• Ĺ only if initial

(Nothing-before-Ĺ)

• Ĺ implies no H

(No-H-with-Ĺ)

• Ĺ must be followed by L

(L-follows-Ĺ)
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Yidin is not FO(+1)

6

7

1

4

5

2

3

0

L̀

L

H́

H

H̀

L̀
L

H́

LL̀

L

Ĺ

L

L̀

⋊

2kt

z }| {

L̀L · · · L̀L H́H

2kt

z }| {

L̀L · · · L̀L H̀H

2kt

z }| {

L̀L · · · L̀L ⋉

≡L
k,t

⋆ ⋊ L̀L · · · L̀L
| {z }

2kt

H̀H

2kt

z }| {

L̀L · · · L̀L H́H L̀L · · · L̀L
| {z }

2kt

⋉

• no-H-before-H́ is not FO(+1)

• One-σ́ is FO(+1)

• No-H-with-Ĺ is LT.

• (σσ̀)∗, Nothing-before-Ĺ, and

L-follows-Ĺ are all SL2.
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Long-Distance Dependencies

Sarcee sibilant harmony:

[-anterior] sibilants do not occur after [+anterior] sibilants

a. /si-tSiz-aP/ → S��tS��dz�aP ‘my duck’

b. /na-s-GatS/ → n	aSG�atS ‘I killed them again’

c. cf. ⋆s��tS��dz�aP
Σ∗ · [+] · Σ∗ · [-] · Σ∗

Samala (Chumash) sibilant harmony:

[-anterior] sibilants do not occur in the same word as [+anterior]

sibilants

[StojonowonowaS] ‘it stood upright’ *[Stojonowonowas]
(Σ∗ · [+] · Σ∗ · [-] · Σ∗) + (Σ∗ · [-] · Σ∗ · [+] · Σ∗)
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Complexity of Sibilant Harmony

(Samala and Sarcee)

Symmetric sibilant harmony is LT

¬([+] ∧ [−])

Asymmetric sibilant harmony is not FO(+1)

⋊w [−] w [+] w⋉

≡L
k,t

⋆ ⋊w [−] w [+] w [−] w⋉
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Precedence—Subsequences

Definition 8 (Subsequences)

v ⊑ w
def
⇐⇒ v = σ1 · · ·σn and w ∈ Σ∗ · σ1 · Σ

∗ · · ·Σ∗ · σn · Σ∗

Pk(w)
def
= {v ∈ Σk | v ⊑ w}

P≤k(w)
def
= {v ∈ Σ≤k | v ⊑ w}

σ σ σ́ σ σ̀ σ
σσ, σσ́, σ́σ, σσ̀, σ̀σ
σσ́, σσ, σ́σ̀
σσ, σσ̀, σ́σ
σσ̀, σσ
σσ

P2(σσσ́σσ̀σ) = {σσ, σσ́, σσ̀, σ́σ, σ́σ̀, σ̀σ}

P≤2(σσσ́σσ̀σ) = {ε, σ, σ́, σ̀, σσ, σσ́, σσ̀, σ́σ, σ́σ̀, σ̀σ}
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Strictly Piecewise Stringsets—SP

Strictly k-Piecewise Definitions

G ⊆ Σ≤k

w |= G
def
⇐⇒ P≤k(w) ⊆ P≤k(G)

L(G)
def
= {w ∈ Σ∗ | w |= G}

GNo-H-before-H́ = {HH,HH̀, H̀H, H̀H̀, H́H, H́H̀, . . .}

*
L H́ L H L L L L LH H́L

Membership in an SPk stringset depends only on the individual

(≤ k)-subsequences which do and do not occur in the string.
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Character of the Strictly k-Piecewise Sets

Theorem 5 A stringset L is Strictly k-Piecewise Testable iff, for

all w ∈ Σ∗,

P≤k(w) ⊆ P≤k(L) ⇒ w ∈ L

Consequences:

Subsequence Closure: wσv ∈ L⇒ wv ∈ L

Unit Strings: P1(L) ⊆ L

Empty String: L 6= ∅ ⇒ ε ∈ L

Every naturally occurring stress pattern requires Primary Stress

⇒

No naturally occurring stress pattern is SP.

But SP can forbid multiple primary stress: ¬σ́σ́
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SP Hierarchy

Definition 9 (SP)

A stringset is Strictly k-Piecewise if it is definable with an SPk

definition.

A stringset is Strictly Piecewise (in SP) if it is SPk for some k.

Theorem 6 (SP-Hierarchy)

SP2 ( SP3 ( · · · ( SPi ( SPi+1 ( · · · ( SP

SP is incomparable (wrt subset) with the Local Hierarchy

SP2 6⊆ FO(+1) No-H-before-H́ ∈ SP2 −FO(+1)

SL2 6⊆ SP (σσ̀)∗ ∈ SL2 − SP

SP2 ∩ SL2 6= ∅ A∗B∗ ∈ SP2 ∩ SL2

Fin 6⊆ SP {A} ∈ Fin− SP
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Sarcee Sibilant Harmony is SP2

{. . . , [−] [−], [−] [+], [+] [+], . . .}
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Yidin constraints wrt SP

6

7

1

4

5

2

3

0

L

L̀
Ĺ

L

H

H́

H́

LL̀

L

L̀

L

H̀

L̀

• No-H-before-H́ is SP2:

Forbid HH́

• Nothing-before-Ĺ is SP2:

Forbid ΣĹ

• One-σ́ is not SP:

⋆ σσσ̀ ⊑ σσ́σσ̀

• (σσ̀)∗ is not SP:

⋆ σσσ̀ ⊑ σσ̀σσ̀

• L-follows-Ĺ is not SP:

⋆ ĹL̀ ⊑ ĹLL̀
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Cognitive interpretation of SP

• Any cognitive mechanism that can distinguish member strings

from non-members of an SPk stringset must be sensitive, at

least, to the length k (not necessarily consecutive) sequences of

events that occur in the presentation of the string.

• If the strings are presented as sequences of events in time, then

this corresponds to being sensitive, at each point in the string,

to up to k − 1 events distributed arbitrarily among the prior

events.

• Any cognitive mechanism that is sensitive only to the length k

sequences of events in the presentation of a string will be able

to recognize only SPk stringsets.
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k-Piecewise Testable Stringsets

PTk-expressions

p ∈ Σ≤k w |= p
def
⇐⇒ p ⊑ w

ϕ ∧ ψ w |= ϕ ∧ ψ
def
⇐⇒ w |= ϕ and w |= ψ

¬ϕ w |= ¬ϕ
def
⇐⇒ w 6|= ϕ

k-Piecewise Testable Languages (PTk):

L(ϕ)
def
= {w ∈ Σ∗ | w |= ϕ}

One-σ́ = L(σ́ ∧ ¬σ́σ́)

Membership in an PTk stringset depends only on the set of

(≤ k)-subsequences which occur in the string.

SPk is equivalent to
∧

pi 6∈G [¬pi]
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Character of Piecewise Testable sets

Theorem 7 (k-Subsequence Invariance) A stringset L is

Piecewise Testable iff

there is some k such that, for all strings x and y,

if x and y have exactly the same set of (≤ k)-subsequences

then either both x and y are members of L or neither is.

w ≡P
k v

def
⇐⇒ P≤k(w) = P≤k(v).
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Yidin constraints wrt PT

6
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L̀
L

H́

L̀
Ĺ

L

H

H́

LL̀

L

L̀

L

H̀

• No-H-before-H́ is SP2:

Forbid HH́

• Nothing-before-Ĺ is SP2:

Forbid ΣĹ

• One-σ́ is PT2:

Require σ́, Forbid σ́σ́

• (σσ̀)∗ is not PT:
2k

︷ ︸︸ ︷

σσ̀ · · ·σσ̀ ≡P
k

2k
︷ ︸︸ ︷

σσ̀ · · ·σσ̀ σ̀

• L-follows-Ĺ is not PT:

ĹL

2k

z }| {

L̀L · · · L̀L ≡P

k ĹL

2k

z }| {

L̀L · · · L̀L
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PT Hierarchy

Definition 10 (SP)

A stringset is k-Piecewise Testable if it is definable with an PTk

definition.

A stringset is Piecewise Testable (in PT) if it is PTk for some k.

Theorem 8 (PT-Hierarchy)

PT2 ( PT3 ( · · · ( PTi ( PTi+1 ( · · · ( PT
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PT, SP and the Local Hierarchy

SPk ( PTk

SPk+1 6⊆ PTk

PT2 6⊆ SP One-H́ ∈ PT2 − SP

PT2 6⊆ FO(+1) No-H-before-H́ ∈ PT2 −FO(+1)

SL2 6⊆ PT (σσ̀)∗ ∈ SL2 −PT

PT2 ∩ SL2 6= ∅ A∗B∗ ∈ PT2 ∩ SL2

Fin ⊆ SP :

Σ∗ = L(ε), ∅ = L(¬ε), {ε} = L(
∧

σ∈Σ

[¬σ]),

{w} = L(w ∧
∧

p∈Σ|w|+1

[¬p])

{w1, . . . , wn} = L(
∨

1≤i≤n

[wi ∧
∧

p∈Σ|wi|+1

[¬p]])
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Cognitive interpretation of PT

• Any cognitive mechanism that can distinguish member strings

from non-members of an PTk stringset must be sensitive, at

least, to the set of length k subsequences of events that occur

in the presentation of the string—both those that do occur and

those that do not.

• If the strings are presented as sequences of events in time, then

this corresponds to being sensitive, at each point in the string,

to the set of all length k subsequences of the sequence of prior

events.

• Any cognitive mechanism that is sensitive only to the set of

length k subsequences of events in the presentation of a string

will be able to recognize only PTk stringsets.
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First-Order(<) definable stringsets

〈D, ⊳+, Pσ〉σ∈Σ

First-order Quantification over positions in the strings

x ⊳+ y w, [x 7→ i, y 7→ j] |= x ⊳+ y
def
⇐⇒ i < j

Pσ(x) w, [x 7→ i] |= Pσ(x)
def
⇐⇒ i ∈ Pσ

ϕ ∧ ψ
...

¬ϕ
...

(∃x)[ϕ(x)] w, s |= (∃x)[ϕ(x)]
def
⇐⇒ w, s[x 7→ i] |= ϕ(x)]

for some i ∈ D
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PT, FO(+1) and FO(<)

Theorem 9 PT ( FO(<).

σ1 · · ·σn ⊑ w ⇔ (∃x1, . . . , xn)[
∧

1≤i<j≤n

[xi ⊳
+ xj ] ∧

∧

1≤i≤n

[Pσi
(xi)] ]

(σσ̀)∗ ⊆ FO(<)−PT

Theorem 10 FO(+1) ( FO(<).

+1 is FO definable from <:

x ⊳ y ≡ x ⊳+ y ∧ ¬(∃z)[x ⊳+ z ∧ z ⊳+ y]

No-H-before-H́ ⊆ FO(<)−FO(+1)
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Star-Free stringsets

Definition 11 (Star-Free Set) The class of Star-Free Sets (SF)

is the smallest class of languages satisfying:

• Fin ⊆ SF.

• If L1, L2 ∈ SF then: L1 · L2 ∈ SF,

L1 ∪ L2 ∈ SF,

L1 ∈ SF.

Theorem 11 (McNauthton and Papert) A set of strings is

First-order definable over 〈D, ⊳+, Pσ〉σ∈Σ iff it is Star-Free.
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PT and LT with Order

ϕ • ψ w |= ϕ • ψ
def
⇐⇒ w = w1 · w2, w1 |= ϕ and w2 |= ψ.

LTOk is LTk plus ϕ • ψ

No-H-before-H́ = L((¬H) • (¬H́)) ∈ LTO

PTOk is PTk plus ϕ • ψ

Let:

ϕA=i = Ai ∧
∧

p∈Σi+1 [¬p], ϕΣ∗ = ε

L(ϕA=i) = {Ai} L(ϕΣ∗) = Σ∗

Then:

(σσ̀)∗ = L(¬(ϕσ̀=1 • ϕΣ∗) ∧ ¬(ϕΣ∗ • ϕσ=1)∧

¬(ϕΣ∗ • ϕσ=2 • ϕΣ∗) ∧ ¬(ϕΣ∗ • ϕσ̀=2 • ϕΣ∗)) ∈ PTO
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PTO, LTO and SF

Theorem 12

PTO = SF = LTO

SF ⊆ PTO, SF ⊆ LTO

Fin ⊆ PTO, Fin ⊆ LTO and both are closed under concatenation,

union and complement.

LTO ⊆ PTO ⊆ SF

Concatenation is FO(<) definable.
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Yidin is FO(<)

6

7

1

4

5

2

3

0

L
H́

LL̀

H́

H L̀

H̀

L

L̀

L̀

L

Ĺ

L

• No-H-before-H́ is SP2:

Forbid HH́

• Nothing-before-Ĺ is SP2:

Forbid ΣĹ

• One-σ́ is PT2:

Require σ́, Forbid σ́σ́

• (σσ̀)∗ is SL2:

{⋊σ, σσ̀, σ̀σ, σ̀⋉}

• L-follows-Ĺ is SL2:

¬{ĹH, ĹH̀, ĹH́, ĹL̀, ĹĹ}

Yidin is SL2 ∩ PT2.

Yidin is LT2 ∩ SP2.
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Character of FO(<) definable sets

Theorem 13 (McNaughton and Papert) A stringset L is

definable by a set of First-Order formulae over strings iff it is

recognized by a finite-state automaton that is non-counting (that

has an aperiodic syntactic monoid), that is, iff:

there exists some n > 0 such that

for all strings u, v, w over Σ

if uvnw occurs in L

then uvn+iw, for all i ≥ 1, occurs in L as well.

E.g.

{people (who were left by people)n left} ∈ L

{people (who were left by people)n+1 left} ∈ L
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Cognitive interpretation of FO(<)

• Any cognitive mechanism that can distinguish member strings

from non-members of an FO(<) stringset must be sensitive, at

least, to the sets of length k blocks of events, for some fixed k,

that occur in the presentation of the string when it is factored

into segments, up to some fixed number, on the basis of those

sets with distinct criteria applying to each segment.

• If the strings are presented as sequences of events in time, then

this corresponds to being able to count up to some fixed

threshold with the counters being reset some fixed number of

times based on those counts.

• Any cognitive mechanism that is sensitive only to the sets of

length k blocks of events in the presentation of a string once it

has been factored in this way will be able to recognize only

FO(<) stringsets.
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MSO definable stringsets

〈D, ⊳, ⊳+, Pσ〉σ∈Σ

First-order Quantification (positions)

Monadic Second-order Quantification (sets of positions)

⊳+ is MSO-definable from ⊳.
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MSO example

(∃X0, X1)[ (∀x)[(∃y)[y ⊳ x] ∨X0(x)] ∧

(∀x, y)[¬(X0(x) ∧X1(x))] ∧

(∀x, y)[x ⊳ y → (X0(x) ↔ X1(y)] ∧

(∀x)[(∃y)[x ⊳ y] ∨X1(x)] ]

X0 X0 X0

X1X1X1

a b b a b a
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Theorem 14 (Chomsky Schützenberger) A set of strings is

Regular iff it is a homomorphic image of a Strictly 2-Local set.

Definition 12 (Nerode Equivalence) Two strings w and v are

Nerode Equivalent with respect to a stringset L over Σ (denoted

w ≡L v) iff for all strings u over Σ, wu ∈ L⇔ vu ∈ L.

Theorem 15 (Myhill-Nerode) A stringset L is recognizable by a

FSA (over strings) iff ≡L partitions the set of all strings over Σ

into finitely many equivalence classes.

Theorem 16 (Medvedev, Büchi, Elgot) A set of strings is

MSO-definable over 〈D, ⊳, ⊳+, Pσ〉σ∈Σ iff it is regular.

Theorem 17 MSO = ∃MSO over strings.
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Cognitive interpretation of Finite-state

• Any cognitive mechanism that can distinguish member strings

from non-members of a finite-state stringset must be capable of

classifying the events in the input into a finite set of abstract

categories and are sensitive to the sequence of those categories.

• Subsumes any recognition mechanism in which the amount of

information inferred or retained is limited by a fixed finite

bound.

• Any cognitive mechanism that has a fixed finite bound on the

amount of information inferred or retained in processing

sequences of events will be able to recognize only finite-state

stringsets.
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Hindi (Kelkar)

11

12

10

13

8

9

14

21

1

22

23

2

3 16

24

27

7

26

25

17

18

19

20

4

0

29

15

28

30

31

6

5

e

f

f

e

cg

a

f

c

a

g b

f

c

g

f

f

c g

a

c

f

c

a

g b

e

f

c

g

c

a

gb

ef

e

f

f

c

ef

c

f

g

e

c

e

c

a

g

e

b

d

f

f

c

f

f

c

a

g

e

b

d

f

f

e

c

a

gb

c

e

cg

a

c

g

f

c

g

e f

f

e

cg

a
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Local and Piecewise Hierarchies

∩?

Fin

SL SP

LT PT

LTT

FO

Reg MSO

Prop

+1 <

SF

∩?

Slide 66

Complexity of some phonological constraints

MSO Hindi (Kellkar)?

(Reg)

FO(<) (Yidin)

(SF)

FO(+1) ?

LT PT

LT2 Some-σ́,

Symmetric SH LT2 ∩ PT2 Yidin PT2 One-σ́

SL SP

SL6 72%

SL4 Arabic (Cariene)

SL3 ⋆ CCC,

Alawa,

Arabic (Bani-Hassan),

49%

SL2 Cambodian SP2 Asymmetric SH,

No-H-before-H́ ,

Nothing-before-Ĺ
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n-gram Models of Language

b

a

F

c

⋊

c

a

⋉b

aa

b
b ⋉

⋉
⋉

c

c

b

c

a

0.3

0.4

0.3

0.0

0.40.2

0.2

0.5
0.4

0.0

0.0

0.5

0.5

0.2

0.0

0.1

PrL(σ1 · · ·σn) = PrL(σ1 | ⋊) ·
∏

1<i≤n

[PrL(σi | σi − 1)] · PrL(⋉ | σn)

Fk(w)
def
= {v ∈ Σk | w ∈ Σ∗ · v · Σ∗}

FM
k (w)

def
= {{v ∈ Σk | w ∈ Σ∗ · v · Σ∗}}

PrL(w) =
∏

v·σ∈F M

k
(⋊·w·⋉)

[PrL(σ | v)]
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Strictly k-Local Languages (SLk)

⋊

a

b

c

F

⋉

a

b

a
a

b
b

c

b

a

⋉

c

⋉

c

⋉

c

TM
def
= {vσ ∈ Fk(⋊ · Σ∗ · ⋉) | δ(v, σ)↓}

L(M) = {w ∈ Σ∗ | Fk(w) ⊆ TM}

L ∈ SLk
def
⇐⇒ L is L(M) for some k-scanner M

L ∈ SL
def
⇐⇒ (∃k)[L ∈ SLk]
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Subsequences

v is a subsequence of w:

v ⊑ w
def
⇐⇒ v = σ1 · · ·σk and w ∈ Σ∗ · σ1 · Σ

∗ · · ·Σ∗ · σk · Σ∗

Pk(w)
def
= {v ∈ Σk | v ⊑ w} P≤k(w)

def
=

⋃

0<i≤k

[Pi(w)]

PM
k (w)

def
= {{v ⊑ w}}

Would like:

PrL(w) =
∏

v·σ∈P M

≤k
(w)

[PrL(σ | v)]
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Initial Model

{ε}

{ε, b}

{ε, a}

{ε, c}

{ε, a, b}

{ε, a, c}

{ε, b, c} {ε, a, b, c}

a

b

c

a

b

c

a

b

c

a

c

b
a

bc

c

b
a

b c

a

b

a

c
0.0

0.00.2

0.5

0.2

0.1

0.1

0.3 0.2

0.4

0.2
0.0

0.3
0.4

0.4

0.0

0.3

0.0

0.5

0.5

0.5

0.2

0.3

0.2

0.2
0.4

0.30.1

0.3 0.3

0.2

0.2

Q = P(P≤k(Σ∗))

Let w = v · σ · u, q = δ̂({ε}, v):

T (q, σ) = PrL(σ | P≤k(v) = q)
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PT-Automata

{ε}

{ε, b}

{ε, a}

{ε, c}

{ε, a, b}

{ε, a, c}

{ε, b, c} {ε, a, b, c}

c

a

b

b

a

c

a

a

b

b

c

c

a

b

c

a

b

c

a

a

c

b

c

b
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Piecewise-Testable Languages (PT)

SI(w)
def
= {v ∈ Σ∗ | w ⊑ v}

L is Piecewise Testable
def
⇐⇒ L is a finite Boolean combination of

principal shuffle ideals.

Pk-expressions

Atoms v ∈ P≤k(Σ∗)

w |= v
def
⇐⇒ w ∈ SI(v) (i.e., v ⊑ w)

Operators Truth functional connectives

L ∈ PTk ⇔ L = {w ∈ Σ∗ | w |= ϕ} for some Pk-expression ϕ
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PT-Automata and Pk-expressions

{ε}

{ε, b}

{ε, a}

{ε, c}

{ε, a, b}

{ε, a, c}

{ε, b, c} {ε, a, b, c}

c

a

b

b

a

c

a

a

b

b

c

c

a

b

c

a

b

c

a

a

c

b

c

b

Fϕ = {q ∈ P(P≤k(Σ∗)) | (
∧

s∈q

[s] ∧
∧

s 6∈q

[¬s]) → ϕ}

L(Mϕ) = {w ∈ Σ∗ | w |= φ}
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Strictly Piecewise Testable Languages (SP)

The following are equivalent:

1. L ∈ SP

2. L is the set of strings satisfying a finite conjunction of negative

Pk-literals.

3. L =
⋂

w∈S [SI(w)], S finite,

4. (∃k)[P≤k(w) ⊆ P≤k(L) ⇒ w ∈ L],

5. w ∈ L and v ⊑ w ⇒ v ∈ L (L is subsequence closed),

6. L = SI(X), X ⊆ Σ∗ (L is the complement of a shuffle ideal).
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DFA representation of SPk languages

Let M be a trimmed minimal DFA recognizing an SPk language.

Then:

1. All states of M are accepting states.

2. If δ(q, σ)↑ then there is some s ∈ P≤k({w | δ̂(q0, w) = q}) such

that for all q′ ∈ Q s ∈ P≤k({w | δ̂(q0, w) = q′}) ⇒ δ(q, σ)↑

Consequently, for all q1, q2 ∈ Q and σ ∈ Σ, if δ(q1, σ)↑ and

δ̂(q1, w) = q2 for some w ∈ Σ∗ then δ(q2, σ)↑.

(Missing edges propagate down.)
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SPk-automata

{ε}

{ε, b}

{ε, a}

{ε, c}

{ε, a, b}

{ε, a, c}

{ε, b, c} {ε, a, b, c}

c

a

b

b

a

c

a

a

b

b

c

c

a

b

c

a

b

c

a

a

c

b

c

b

Q = P(P≤k−1(Σ
∗))

Size of automaton: Θ(2card(Σ)k

)
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Factored SPk-automata

SI(aa)

SI(bc) ε a

ε a

b

c

a

b

a
c

a

c

b

a
c

b
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SP-PDFA

ε a

ε

ε a aa

ε

ε a ab

ε b ba

ε b bb

a

b

b

a

b

aa

b b

b

a

b

a
b

a

a

b

b

a

a

b
b

a

b

b

b

a
b

a

b

b

a

b
b

a
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Product PDFAs

Co-emission Probability

CT(〈σ, q1 . . . qn〉) = Πn
i=1Ti(qi, σ)

CF(〈q1 . . . qn〉) = Πn
i=1Fi(qi)

Z(〈q1 . . . qn〉) = CF(〈q1 . . . qn〉) +
∑

σ∈Σ

CT(〈σ, q1 . . . qn〉)

F (〈q1 . . . qn〉) =
CF(〈q1 . . . qn〉)

Z(〈q1 . . . qn〉)

T (〈q1 . . . qn〉, σ) =
CT(〈σ, q1 . . . qn〉)

Z(〈q1 . . . qn〉)
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Product PDFAs—k-sets

Positive Co-emission Probability

PCT(〈σ, qǫ . . . qu〉) =
∏

qw∈〈qǫ...qu〉
qw=w

Tw(qw, σ)

PCF(〈qǫ . . . qu〉) =
∏

qw∈〈qǫ...qu〉
qw=w

Fw(qw)

Z(〈q1 . . . qn〉) = PCF(〈q1 . . . qn〉) +
∑

σ∈Σ

PCT(〈σ, q1 . . . qn〉)

Let q = 〈ǫ, ǫ, b, aa, a, ba, b〉:

CT(a, q) = Tǫ(ǫ, a) · Ta(ǫ, a) · Tb(b, a) ·

Taa(aa, a) · Tab(a, a) · Tba(ba, a) · Tbb(b, a)

PCT(a, q) = Tǫ(ǫ, a) · Tb(b, a) · Taa(aa, a) · Tba(ba, a)
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Complexity

Number of automata:
∑

0≤i<k

[card(Σ)i] = Θ(card(Σ)k−1)

Number of states:
∑

0≤i<k

[(i+ 1) card(Σ)i] = Θ(k card(Σ)k−1)

ML estimation n =
∑

w∈S [|w|]—size of corpus

Θ(n card(Σ)k−1) (v.s. Θ(n))

PrL(w)

Θ(n card(Σ)k−1) (v.s. Θ(n))

Parameters Only final states matter

card(Σ)Θ(card(Σ)k−1) = Θ(card(Σ)k) (Same)
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Remaining issues

• Estimation undercounts

– counts number of k-sequences that start with first

prefix—Θ(n)

– actual number

(
n

k

)

∈ Θ(2n).

• Want probability to depend on multiset of subsequences

– infinitely many states

– but probability of n occurrences is

(probability of occurrence)n

– same number of parameters/still linear time

• Not Regular distribution

– Not clear that there is a corresponding class of distributions

over strings



UCLA Linguistics 42

Slide 83

Summary

SP-Distributions

• Regular distribution

Model (some) long distance dependencies

• Asymptotic complexity same as SL-distributions (n-gram

models)

• SL-distributions can’t model long distance dependencies

SP-distributions can’t model local ones

• Both are classes of Regular distributions

Combination is straightforward
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Samala Corpus

• 4800 words drawn from Applegate 2007, generously provided in

electronic form by Applegate (p.c).

35 Consonants

labial coronal a.palatal velar uvular glottal

stop p pP ph t tP th k kP kh q qP qh P
affricates ⁀ts ⁀tsP ⁀tsh >tS >tSP >tSh
fricatives s sP sh S SP Sh x xP h

nasal m n nP
lateral l lP
approx. w y

6 Vowels

i 1 u

e o

a

(Applegate 1972, 2007)
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Samala: results of SP2 estimation

x

P (x | {y} <) >tS S >ts s>tS 0.0313 0.0455 0. 0.0006

y S 0.0353 0.0671 0. 0.0009>ts 0. 0.0009 0.0113 0.0218

s 0.0002 0.0011 0.0051 0.0335

(Collapsing laryngeal distinctions)
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Finnish: Corpus

• 44,040 words from Goldsmith and Riggle (to appear)

19 Consonants

lab. lab.dental cor. pal. velar uvular glottal

stop p b t d c k g q

fricatives f v s x h

nasal m n

lateral l

rhotic r

approx. w j

8 Vowels

-back +back

i y u

e oe o

ae a

Back vowels and front vowels don’t mix

(except for [i,e], which are transparent).
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Results of SP2 Estimation

b
P (b | {c} <)

i e y oe ae u o a

i 0.092 0.08 0.012 0.006 0.026 0.033 0.033 0.099

e 0.094 0.073 0.014 0.005 0.032 0.035 0.028 0.082

y 0.092 0.071 0.047 0.03 0.066 0.015 0.017 0.039

c oe 0.097 0.067 0.029 0.014 0.053 0.023 0.026 0.059

ae 0.095 0.077 0.038 0.015 0.09 0.015 0.015 0.036

u 0.086 0.07 0.006 0.002 0.007 0.059 0.045 0.12

o 0.111 0.071 0.005 0.002 0.007 0.047 0.034 0.121

a 0.099 0.063 0.005 0.002 0.007 0.049 0.035 0.134


