

Formalization of Syntax Actual Lingusitic Structures? Natural Language (Lingusitic) Theory of Syntax Language as a Set of Mathematical Objects Strings/Trees/... Generative Grammar Slide 2 , FLT Mathematical Automata

Word Models $(<) \quad \langle \mathcal{D}, \triangleleft, \triangleleft^+, P_{\sigma} \rangle_{\sigma \in \Sigma} \qquad (+1) \quad \langle \mathcal{D}, \triangleleft, P_{\sigma} \rangle_{\sigma \in \Sigma}$ \mathcal{D} — Finite $\triangleleft^+ \quad - \quad \text{Linear order on } \mathcal{D}$ $\triangleleft \quad - \quad \mathrm{Successor} \ \mathrm{wrt} \ \triangleleft^+$ P_{σ} — Partition \mathcal{D} $w \in \Sigma^* \quad \equiv \quad \langle \mathcal{D}^w, (\triangleleft)^w, (\triangleleft^+)^w, P^w_\sigma \rangle_{\sigma \in \Sigma}$ $\mathcal{D}^w \stackrel{\text{def}}{=} \{i \mid 0 \le i < |w|\}$ $\begin{array}{lll} \mathcal{D}^w & \stackrel{\text{def}}{=} & \{i \mid 0 \leq i < |w|\} \\ (\triangleleft)^w & \stackrel{\text{def}}{=} & \{\langle i, i+1 \rangle \mid 0 \leq i < |w|-1\} \\ (\triangleleft^+)^w & \stackrel{\text{def}}{=} & \{\langle i, j \rangle \mid 0 \leq i < j < |w|\} \\ P^w_\sigma & \stackrel{\text{def}}{=} & \{i \mid w = u \cdot \sigma \cdot v, \, |u| = i\} \end{array}$ $\mathcal{A} \cdot \mathcal{B} \stackrel{\mathrm{def}}{=} \langle \mathcal{D}^{\mathcal{A}} \uplus \mathcal{D}^{\mathcal{B}}, (\triangleleft)^{\mathcal{A} \cdot \mathcal{B}}, (\triangleleft^+)^{\mathcal{A}} \cup (\triangleleft^+)^{\mathcal{B}} \cup (\mathcal{D}^{\mathcal{A}} \times \mathcal{D}^{\mathcal{B}}), P_{\sigma}^{\mathcal{A}} \uplus P_{\sigma}^{\mathcal{B}} \rangle$

	k-grams k-factors
Slide 6	$F_{k}(w) \stackrel{\text{def}}{=} \begin{cases} \{w\}, & \text{if } w < k \\ \{y \mid w = x \cdot y \cdot z, y = k\}, & \text{otherwise.} \end{cases}$ $F_{k}(L) \stackrel{\text{def}}{=} \{F_{k}(w) \mid w \in L\}$ Strictly k-Local Definitions
	$\mathcal{G} \subseteq F_k(\{\rtimes\} \cdot \Sigma^* \cdot \{\ltimes\})$ $w \models \mathcal{G} \stackrel{\text{def}}{\iff} F_k(\rtimes \cdot w \cdot \ltimes) \subseteq \mathcal{G}$ $L(\mathcal{G}) \stackrel{\text{def}}{=} \{w \mid w \models \mathcal{G}\}$

	Character of Strictly 2-Local Sets
	Theorem (Suffix Substitution Closure): A stringset L is strictly 2-local iff whenever there is a word x and strings w , y , v , and z , such that
	$w \ \cdot \ x \ \cdot \ y \ \in L$
Slide 9	$v \ \cdot \ x \ \cdot \ z \ \in L$
Silde 5	then it will also be the case that
	$w \ \cdot \ x \ \cdot \ z \ \in L$
	Example:
	The dog \cdot likes \cdot the biscuit $\in L$
	Alice \cdot likes \cdot Bob $\in L$
	The dog \cdot likes \cdot Bob $\in L$

Slide 10 Slide 10 $w \cdot x \cdot y \in L$ $w \cdot x \cdot z \in L$ then it will also be the case that k-Expressions $f \in F_k(\rtimes \cdot \Sigma^* \ltimes) \qquad w \models f \quad \stackrel{\text{def}}{\iff} \quad f \in F_k(\rtimes \cdot w \cdot \ltimes)$ $\varphi \land \psi \qquad w \models \varphi \land \psi \quad \stackrel{\text{def}}{\iff} \quad w \models \varphi \text{ and } w \models \psi$ $\neg \varphi \qquad w \models \neg \varphi \quad \stackrel{\text{def}}{\iff} \quad w \not\models \varphi$ Locally k-Testable Languages (LT_k): $L(\varphi) \stackrel{\text{def}}{=} \{w \mid w \models \varphi\}$ $SL_k \equiv \bigwedge_{f_i \notin \mathcal{G}} [\neg f_i] \subsetneq LT_k$

Character of Locally Testable Sets
Locally Testable Sets A stringset L over Σ is <i>Locally Testable</i> iff (by definition) there is some k -expression φ over Σ (for some k) such that L is the set of all strings that satisfy φ .
$L_{\varphi} = \{ x \in \Sigma^* \mid x \models \varphi \}$
Theorem (k-Test Invariance): A stringset L is Locally Testable iff
there is some k such that, for all strings x and y ,
if $\rtimes \cdot x \cdot \ltimes$ and $\rtimes \cdot y \cdot \ltimes$ have exactly the same set of $k\text{-factors}$
then either both x and y are members of L or neither is.

 $\mathbf{FO}(<) \text{ over Strings and LTO}$ $w \models ab \Leftrightarrow w \models (\exists x, y)[x \triangleleft y \land P_a(x) \land P_b(y)]$ $w \models \varphi \bullet \psi \Leftrightarrow w \models (\exists x)[\varphi^{<x}(x) \land \psi^{\ge x}(x)]$ $w \models P_{\sigma}(\max) \Leftrightarrow w \models \sigma \ltimes$ $w \models \max \approx \max \Leftrightarrow w \models f \lor \neg f$ $w \models \max \approx \min \Leftrightarrow w \models \bigvee_{\sigma \in \Sigma} [\exists \sigma \ltimes]$ $w \models (\exists x)[\varphi(x)] \Leftrightarrow w \models (\exists x)[\bigvee_{\langle \varphi_i, \psi_i \rangle \in S_{\varphi}} [\varphi_i^{<x}(x) \land \psi_i^{\ge x}(x)]]$ $S_{\varphi} \text{ finite, } qr(\varphi_i), qr(\psi_i) < qr((\exists x)[\varphi(x)]).$ $\mathbf{Theorem 2 (McNauthton and Papert) A set of strings is First-order definable over \langle \mathcal{D}, \triangleleft, \triangleleft^+, P_{\sigma} \rangle_{\sigma \in \Sigma} \text{ iff it is Star-Free.}}$

	Character of First-Order Definable Sets
	Theorem (McNaughton and Papert): A stringset L is Star-Free iff it is recognized by a finite-state automaton that is <i>non-counting</i> (that has an <i>aperiodic</i> syntactic monoid), that is, iff:
	there exists some $n > 0$ such that
Slide 17	for all strings u, v, w over Σ
	if $uv^n w$ occurs in L
	then $uv^{n+i}w$, for all $i \ge 1$, occurs in L as well.
	E.g. $(n = 2)$
	my father's father's father resembled my father $\in L$
	my father's father's (father's) father resembled my father $\in L$

FO(+1) (Strings) $\langle \mathcal{D}, \triangleleft, P_{\sigma} \rangle_{\sigma \in \Sigma}$ First-order Quantification (over positions in the strings) **Theorem 3 (Thomas)** A set of strings is First-order definable over $\langle \mathcal{D}, \triangleleft^+, P_{\sigma} \rangle_{\sigma \in \Sigma}$ iff it is Locally Threshold Testable. **Definition 2 (Locally Threshold Testable)** A set L is Locally Threshold Testable (LTT) iff there is some k and t such that, for all $w, v \in \Sigma^*$: if for all $f \in F_k(\rtimes \cdot w \cdot \ltimes) \cup F_k(\rtimes \cdot v \cdot \ltimes)$ either $|w|_f = |v|_f$ or both $|w|_f \ge t$ and $|v|_f \ge t$, then $w \in L \iff v \in L$.

Slide 20 $\begin{aligned}
\mathbf{MSO Example} \\
(\exists X_0, X_1) [& (\forall x, y) [(X_0(x) \land x \triangleleft y) \to X_0(y)] \land \\ & (\forall x) [C(x) \to X_0(x)] \land (\exists x) [X_0(x) \land B(x)] & \land \\ & (\forall x, y) [(X_1(x) \land x \triangleleft y) \to X_1(y)] \land \\ & (\forall x) [B(x) \to X_0(x)] \land \neg (\exists x) [A(x) \land X_1] &] \end{aligned}$ $\begin{aligned}
\mathbf{a} \quad \mathbf{C} \quad \mathbf{a} \quad \mathbf{b} \quad \mathbf{b} \quad \mathbf{C} \quad \mathbf{b} \\ & | & X_1 \mid X_1 \mid X_1 \mid X_1 \mid X_1 \mid \\ & X_0 \mid X$

Slide 22

Theorem 4 (Chomsky Shützenberger) A set of strings is Regular iff it is a homomorphic image of a Strictly 2-Local set. **Definition** (Nerode Equivalence): Two strings w and v are Nerode Equivalent with respect to a stringset L over Σ (denoted $w \equiv_L v$) iff for all strings u over Σ , $wu \in L \Leftrightarrow vu \in L$. **Theorem 5 (Myhill-Nerode)** : A stringset L is recognizable by a FSA (over strings) iff \equiv_L partitions the set of all strings over Σ into finitely many equivalence classes. Theorem 6 (Büchi, Elgot) A set of strings is MSO-definable over $\langle \mathcal{D}, \triangleleft, \triangleleft^+, P_{\sigma} \rangle_{\sigma \in \Sigma}$ iff it is regular. **Theorem 7** $MSO = \exists MSO \text{ over strings.}$ $SL \leq FO(+) = LTT \leq FO(<) = SF \leq MSO = Reg. (strings)$

Slide 24 $\mathbf{Modal \ Logics} \longrightarrow \mathbf{Strings} \longrightarrow \mathbf{Adding} \rightarrow^{*}$ $\mathcal{L}_{\rightarrow^{*}} \quad \varphi: \quad P, \ \top, \ \neg\varphi, \ \varphi \land \psi, \ \langle \rightarrow \rangle\varphi, \ \langle \rightarrow^{*} \rangle\varphi$ $\mathcal{T}, t \models \langle \rightarrow \rangle\varphi \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad (\exists t')[\langle t, t' \rangle \in \mathcal{T}^{\triangleleft} \text{ and } \mathcal{T}, t' \models \varphi]$ $\mathcal{T}, t \models \langle \rightarrow^{*} \rangle\varphi \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad (\exists t')[(t' \approx t \text{ or } \langle t, t' \rangle \in \mathcal{T}^{\triangleleft^{+}}) \text{ and } \mathcal{T}, t' \models \varphi]$ $L(\varphi) \stackrel{\text{def}}{=} \{\mathcal{T} \mid \mathcal{T}, \varepsilon \models \varphi\}$ $L_{\text{word}} = \mathrm{SL} \ \varsigma \ \mathrm{LT} \ \varsigma \ \mathcal{L}_{\rightarrow^{*}} \ \varsigma \ \mathrm{FO}(<) \ (\text{strings})$

Slide 26 $\begin{aligned}
\mathcal{L}_{pdl} \quad \varphi : \quad P, \; \top, \; \neg \varphi, \; \varphi \land \psi, \; \langle \pi \rangle \varphi \\
\pi : \quad \rightarrow, \; ?\varphi, \; \pi_1; \; \pi_2, \; \pi_1 \cup \pi_2, \; \pi^*
\end{aligned}$ $\begin{aligned}
\mathcal{L}_{pdl} \quad \varphi : \quad P, \; \top, \; \neg \varphi, \; \varphi \land \psi, \; \langle \pi \rangle \varphi \\
\pi : \quad \rightarrow, \; ?\varphi, \; \pi_1; \; \pi_2, \; \pi_1 \cup \pi_2, \; \pi^*
\end{aligned}$ Slide 26 $\begin{aligned}
\mathcal{L}_{rt} \models \langle \pi \rangle \varphi \stackrel{\text{def}}{\iff} \; (\exists t') [\langle t, t' \rangle \in R_{\pi}^{T} \; \text{and} \; \mathcal{T}, t' \models \varphi] \\
R_{\pi}^{T} \stackrel{\text{def}}{=} \; \triangleleft^{\mathcal{T}} \qquad R_{?\varphi}^{T} \stackrel{\text{def}}{=} \; \{\langle t, t \rangle \mid \mathcal{T}, t \models \varphi\} \\
R_{\pi_1;\pi_2}^{T} \stackrel{\text{def}}{=} \; R_{\pi_1}^{T} \circ R_{\pi_2}^{T} \qquad R_{\pi_1\cup\pi_2}^{T} \stackrel{\text{def}}{=} \; R_{\pi_1}^{T} \cup R_{\pi_2}^{T}
\end{aligned}$ $\begin{aligned}
\mathcal{L}_{word} = \text{SL} \lneq \mathcal{L}_{\rightarrow^*} \lneq \mathcal{L}_{until} = \text{FO}(<) \lneq \mathcal{L}_{pdl} = \text{MSO} = \text{Reg. (strings)}
\end{aligned}$

FO, MSO—Trees Theorem 10 (Thatcher) A set of Σ -labeled trees is recognizable iff it is a projection of a local set of trees. Theorem 11 (Thatcher and Wright, Doner) A set of Σ -labeled trees is definable in MSO over trees iff it is recognizable. $LTG \leq FO(\triangleleft_2^+) \leq MSO(\triangleleft_2^+) = Reg$ (trees) Theorem 12 (Thatcher) A set of strings L is the yield of a local set of trees (equivalently, is the yield of a recognizable set of trees) iff it is Context-Free.

Corollary 1 A set of strings L is the yield of a MSO (or FO) definable set of trees iff it is Context-Free.

	Parsing Model-Theoretic Grammars
	Parsing string grammars
	$L(\varphi) = \{ w \mid w \models \varphi \}$
C1' 1 0 4	Parsing = satisfaction (model checking)
Slide 34	Parsing tree grammars
	$L(\varphi) = \{ \text{Yield}(\mathcal{T}) \mid \mathcal{T} \models \varphi \}$
	Let: $\psi_w \stackrel{\text{def}}{=}$ "yield of \mathcal{T} is w ".
	Then: $\{\mathcal{T} \mid \mathcal{T} \models \psi_w \land \varphi\} = \text{ parse forest for } w.$
	Recognition = satisfiability of $\psi_w \wedge \varphi$

FO—Trees FO(+1): $\langle T, \triangleleft_1, \triangleleft_1^+, \triangleleft_2, P_\sigma \rangle_{\sigma \in \Sigma}$ Theorem 13 (Benedikt and Segoufin) A regular set of trees is definable in FO(+1) over trees iff it is Locally Threshold Testable. Theorem 14 (Benedikt and Segoufin) A regular set of trees is definable in FO(+1) over trees iff it is aperiodic. FO(mod): $\mathcal{T} \models (\exists^{r,q}x)[\varphi(x,\vec{y})] \stackrel{\text{def}}{\Longrightarrow}$ $\operatorname{card}(\{a \mid \mathcal{T} \models \varphi(x,\vec{y}) | x \mapsto a]\}) \equiv r \pmod{q}$ Theorem 15 (Benedikt and Segoufin) A regular set of trees is definable in FO(mod) over trees iff it is q-periodic. LTG \leq FO(+) \leq FO(mod) \leq FO(<) \leq MSO = Reg. over trees

Slide 35

Aperiodic/q-periodic Regular Tree Languages $\overbrace{e}^{e} \xrightarrow{e}_{e} \xrightarrow$

Slide 38 $Modal Logics - Trees - \mathcal{L}_{core}$ $\langle T, \triangleleft_1, \triangleleft_1^+, \triangleleft_2, \triangleleft_2^+, P_\sigma \rangle_{\sigma \in \Sigma} \text{ as Frame and Valuation}$ $\mathcal{L}_{core} \quad \varphi : \quad P, \top, \neg \varphi, \varphi \land \psi, \langle \pi \rangle$ $\pi : \quad \rightarrow, \downarrow, \leftarrow, \uparrow, \pi^*$ $T, t \models \langle \pi \rangle \varphi \stackrel{\text{def}}{\iff} (\exists t') [\langle t, t' \rangle \in R_{\pi}^T \text{ and } T, t' \models \varphi]$ $R_{\rightarrow}^T \stackrel{\text{def}}{=} \triangleleft_1^T |_{\{\langle s \cdot i, s \cdot j \rangle\}} \qquad R_{\downarrow}^T \stackrel{\text{def}}{=} \triangleleft_2^T$ $R_{\rightarrow}^T \stackrel{\text{def}}{=} \langle q_1^{\tau T} |_{\{\langle s \cdot i, s \cdot j \rangle\}} \qquad R_{\uparrow^*}^T \stackrel{\text{def}}{=} \langle q_2^{\tau T} |_{R_{\rightarrow}^T} \stackrel{\text{def}}{=} \langle q_2^{\tau T} |_{R_{\rightarrow}^T}$ $\begin{array}{c} \textbf{Modal Logics} \\ \textbf{-Trees} \\ \hline \mathcal{L}_{until} \quad \varphi \colon \ P, \ T, \ \neg \varphi, \ \varphi \land \psi, \\ \mathcal{U}_{\rightarrow}(\varphi, \psi), \ \mathcal{U}_{\leftarrow}(\varphi, \psi), \ \mathcal{U}_{\downarrow}(\varphi, \psi), \ \mathcal{U}_{\uparrow}(\varphi, \psi) \\ \hline \mathcal{T}, t \models \mathcal{U}_{\downarrow}(\varphi, \psi) \stackrel{\text{def}}{\Longrightarrow} (\exists t') [t \triangleleft_{2}^{*} t' \text{ and } \mathcal{T}, t' \models \varphi \text{ and} \\ (\forall s) [t \triangleleft_{2}^{*} s \triangleleft_{2}^{*} t' \Rightarrow \mathcal{T}, s \models \psi]] \\ \hline \mathcal{L}_{pdl} \quad \varphi \colon \ P, \ T, \ \neg \varphi, \ \varphi \land \psi, \ \langle \pi \rangle \varphi \\ \pi \colon \ \rightarrow, \ \leftarrow, \ \downarrow, \ \uparrow, \ ?\varphi, \ \pi_{1}; \pi_{2}, \ \pi_{1} \cup \pi_{2}, \ \pi^{*} \\ R_{?\varphi}^{\mathcal{T}} \stackrel{\text{def}}{=} \{ \langle t, t \rangle \mid \mathcal{T}, t \models \varphi \} \quad R_{\pi_{1};\pi_{2}}^{\mathcal{T}} \stackrel{\text{def}}{=} R_{\pi_{1}}^{\mathcal{T}} \circ R_{\pi_{2}}^{\mathcal{T}} \quad R_{\pi_{1}\cup\pi_{2}}^{\mathcal{T}} \stackrel{\text{def}}{=} R_{\pi_{1}}^{\mathcal{T}} \cup R_{\pi_{2}}^{\mathcal{T}} \\ \hline \mathcal{L}_{cp} \quad \varphi \colon \ P, \ T, \ \neg \varphi, \ \varphi \land \psi, \ \langle \pi \rangle \varphi \\ \pi \colon \ \rightarrow, \ \leftarrow, \ \downarrow, \ \uparrow, \ \varphi^{?}; \pi, \ \pi^{*} \\ \text{LTG} \lneq \mathcal{L}_{core} \lneq \mathcal{L}_{until} = \mathcal{L}_{cp} = \text{FO}(<) \lneq \mathcal{L}_{pdl} \lneq \text{MSO} = \text{Reg. (trees)} \end{array}$

	Feasibility
	• While complexity of translation algorithm is non-elementary, in many actual cases it is practical [Basin and Klarlund'95, Henriksen et al.'95, Morawietz and Cornell'95, '98].
Slide 48	• In many cases it isn't. (viz. indexation) [Morawietz and Cornell'95, '98].
	• Restricting to tractable formulae:
	- Limit the total number of free variables
	- Limit the quantifier depth
	 Limit the overall size of formulae.
	– Morawietz: CLP over recognizable sets of trees

Relevance of FLT to Formal Syntax

- It's too soon to formalize
 - Every hypothetical constraint defines a partial theory.
- Properties of FLT classes are irrelevant to natural language
 - FLT classes characterize certain fundamental logical languages/classes of structures.
 - Any class of structures definable in those logical terms will, consequently, exhibit those properties.
 - But they are not the properties that determine the defined class of structures—the FLT characterizations are consequences of definability.