Formal Issues in the Design and Interpretation of Artificial Grammar Learning Experiments

Slide 1

James Rogers
Dept. of Computer Science
Earlham College
jrogers@cs.earlham.edu

http://cs.earlham.edu/~jrogers/slides/berlin.ho.pdf

This work completed, in part, while in residence at the Radcliffe Institute for Advanced Study

Joint work with:

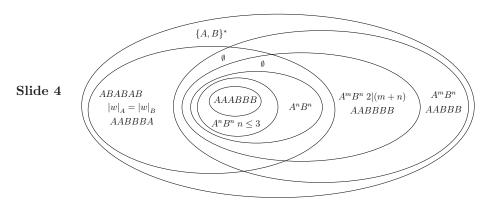
- Geoffrey K. Pullum School of Philosophy, Psychology and Language Sciences University of Edinburgh
- Marc D. Hauser
 Depts. of Psychology, Organismic & Evolutionary Biology and Biological Anthropology
- Slide 2 Harvard University
 - Jeffery Heinz
 Dept. of Linguistics and Cognitive Science
 University of Delaware
 - Gil Bailey, Matt Edlefsen, Molly Visscher, David Wellcome and Sean Wibel
 Dept. of Computer Science
 Earlham College

$$(AB)^n \ \textit{v.s.} \ A^nB^n \ \text{in English}$$

$$\{(\operatorname{ding}\operatorname{dong})^n\}$$
 Slide 3 $\{\operatorname{people}^n\operatorname{left}^n\}$
$$\{\operatorname{people}(\operatorname{who}\operatorname{were}\operatorname{left}\operatorname{by}\operatorname{people})^n\operatorname{left}\}$$

$$\{\operatorname{people}(\operatorname{who}\operatorname{were}\operatorname{left}\operatorname{by}\operatorname{people})^{2n}\operatorname{left}\}$$

Stringset inference experiments



Formal Issues for AGL Experiments

Design

- Identifying relevant classes of patterns
- Finding minimal pairs of stringsets

Slide 5

• Finding sets of stimuli that distinguish those stringsets

Interpretation

- Identifying the class of patterns subject has generalized to
- Inferring the properties of the cognitive mechanism involved
 - properties common to all mechanisms capable of identifying that class of patterns

Assumptions

- Inferred set is not arbitrary
- Principle determining membership is structural
- Inference exhibits some sort of minimality

Dual characterizations of complexity classes

Computational classes

- Characterized by abstract computational mechanisms
- Equivalence between mechanisms
- Means to determine structural properties of stringsets

Slide 7

Descriptive classes

- Characterized by the nature of information about the properties of strings that determine membership
- Independent of mechanisms for recognition
- Support inference about properties of cognitive mechanisms
- Subsume wide range of types of patterns

Sub-regular hierarchies

- Classes of logical descriptions of string models
- Resolve finite-state into dual hierarchy of hierarchies

- Correspondence to cognitive mechanisms
- Relevant to any faculty that deals with structure of sequences of events
- Automata/Grammar-theoretic characterizations

${\bf Adjacency-Substrings}$

Definition 1 (k-Factor)

v is a factor of w if w = uvx for some $u, v \in \Sigma^*$.

v is a k-factor of w if it is a factor of w and |v|=k.

Slide 9

$$F_k(w) \stackrel{def}{=} \begin{cases} \{v \in \Sigma^k \mid (\exists u, x \in \Sigma^*)[w = uvx]\} & \text{if } |w| \ge k, \\ \{w\} & \text{otherwise.} \end{cases}$$

$$\widehat{ABABAB}$$

$$F_2(ABABAB) = \{AB, BA\}$$
$$F_7(ABABAB) = \{ABABAB\}$$

Strictly Local Stringsets—SL

Strictly k-Local Definitions

$$\mathcal{G} \subseteq F_k(\{\times\} \cdot \Sigma^* \cdot \{\ltimes\})$$

$$w \models \mathcal{G} \stackrel{\text{def}}{\Longleftrightarrow} F_k(\times \cdot w \cdot \ltimes) \subseteq \mathcal{G}$$

$$L(\mathcal{G}) \stackrel{\text{def}}{=} \{w \mid w \models \mathcal{G}\}$$

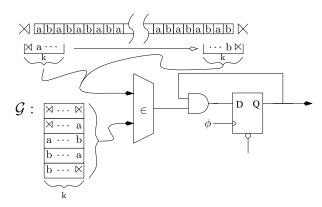
Slide 10

$$\mathcal{G}_{(AB)^n} = \{ \rtimes A, AB, BA, B \ltimes \}$$

$$\times ABABAB \times \times ABBAB \times$$

Membership in an SL_k stringset depends only on the individual k-factors which occur in the string.

Scanners



Slide 11

Recognizing an SL_k stringset requires only remembering the k most recently encountered symbols.

Character of Strictly k-Local Sets

Theorem (Suffix Substitution Closure):

A stringset L is strictly k-local iff whenever there is a string x of length k-1 and strings w, y, v, and z, such that

$$\begin{array}{ccccc}
w & \cdot & \overbrace{x}^{k-1} & \cdot & y & \in L \\
v & \cdot & x & \cdot & z & \in L
\end{array}$$

Slide 12

then it will also be the case that

$$w \cdot x \cdot z \in L$$

Example:

SL Hierarchy

Definition 2 (SL)

A stringset is Strictly k-Local if it is definable with an SL_k definition.

Slide 13 A stringset is Strictly Local (in SL) if it is SL_k for some k.

Theorem 1 (SL-Hierarchy)

$$SL_2 \subseteq SL_3 \subseteq \cdots \subseteq SL_i \subseteq SL_{i+1} \subseteq \cdots \subseteq SL$$

Every Finite stringset is SL_k for some k: Fin $\subseteq SL$.

There is no k for which SL_k includes all Finite languages.

Cognitive interpretation of SL

- Any cognitive mechanism that can distinguish member strings from non-members of an SL_k stringset must be sensitive, at least, to the length k blocks of events that occur in the presentation of the string.
- Slide 14
- If the strings are presented as sequences of events in time, then this corresponds to being sensitive, at each point in the string, to the immediately prior sequence of k-1 events.
- Any cognitive mechanism that is sensitive *only* to the length k blocks of events in the presentation of a string will be able to recognize *only* SL_k stringsets.

Probing the SL boundary

$$(AB)^{n} = L(\{ \rtimes A, AB, BA, B \rtimes \}) \in \operatorname{SL}_{2}$$

$$\operatorname{Some-B} \stackrel{\text{def}}{=} \{ w \in \{A, B\}^{*} \mid |w|_{B} \geq 1 \} \quad \notin \operatorname{SL}$$

$$A \dots A \quad \cdot \quad \underbrace{A \dots A}_{k-1} \quad \cdot \quad BA \dots A \quad \in \operatorname{Some-B}$$

$$A \dots AB \quad \cdot \quad \underbrace{A \dots A}_{k-1} \quad \cdot \quad A \dots A \quad \notin \operatorname{Some-B}$$

$$A \dots A \quad \cdot \quad \underbrace{A \dots A}_{k-1} \quad \cdot \quad A \dots A \quad \notin \operatorname{Some-B}$$

Slide 15

		In	Out
SL	$(AB)^n$	$(AB)^{i+j+1}$	$(AB)^i AA(AB)^j$
	A^mB^n	$A^{i+k}B^{j+l}$	$A^i B^j A^k B^l$
non-SL	Some- B	A^iBA^j	A^{i+j+1}

Locally k-Testable Stringsets

k-Expressions

$$f \in F_k(\rtimes \cdot \Sigma^* \cdot \ltimes) \qquad w \models f \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad f \in F_k(\rtimes \cdot w \cdot \ltimes)$$

$$\varphi \wedge \psi \qquad w \models \varphi \wedge \psi \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad w \models \varphi \text{ and } w \models \psi$$

$$\neg \varphi \qquad w \models \neg \varphi \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad w \not\models \varphi$$

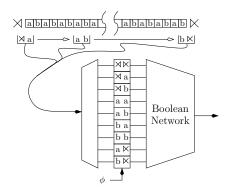
Slide 16

Locally k-Testable Languages (LT_k):

$$L(\varphi) \stackrel{\mathrm{def}}{=} \{w \in \Sigma^* \mid w \models \varphi\}$$
 Some- $B = L(\rtimes B \vee AB) \qquad (= L(\lnot(\lnot \rtimes B \wedge \lnot AB)))$

Membership in an LT_k stringset depends only on the set of k-Factors which occur in the string.

LT Automata



Slide 17

Recognizing an LT_k stringset requires only remembering which k-factors occur in the string.

Character of Locally Testable sets

Theorem 2 (k-Test Invariance) A stringset L is Locally Testable iff

there is some k such that, for all strings x and y,

Slide 18

 $if \rtimes \cdot x \cdot \ltimes \ and \rtimes \cdot y \cdot \ltimes \ have \ exactly \ the \ same \ set \ of \ k$ -factors then either both x and y are members of L or neither is.

$$\begin{split} w \equiv^L_k v & \stackrel{\text{def}}{\Longleftrightarrow} F_k(\rtimes w \ltimes) = F_k(\rtimes v \ltimes). \\ \text{Some-}B = \bigcup \{[w]^L_2 \mid w \in \{A,B\}^*, \, |w|_B \geq 1 \text{ and } |w| \leq 6\}. \end{split}$$

LT Hierarchy

Definition 3 (LT)

A stringset is k-Locally Testable if it is definable with an LT_k -expression.

Slide 19

A stringset is Locally Testable (in LT) if it is LT_k for some k.

Theorem 3 (LT-Hierarchy)

$$LT_2 \subsetneq LT_3 \subsetneq \cdots \subsetneq LT_i \subsetneq LT_{i+1} \subsetneq \cdots \subsetneq LT$$

Cognitive interpretation of LT

• Any cognitive mechanism that can distinguish member strings from non-members of an LT_k stringset must be sensitive, at least, to the set of length k blocks of events that occur in the presentation of the string—both those that do occur and those that do not.

- If the strings are presented as sequences of events in time, then this corresponds to being sensitive, at each point in the string, to the length k blocks of events that occur at any prior point.
- Any cognitive mechanism that is sensitive *only* to the set of length k blocks of events in the presentation of a string will be able to recognize *only* LT_k stringsets.

Probing the LT boundary

$$\operatorname{Some-B} = L(\rtimes B \vee AB) \in \operatorname{LT}_2$$

$$\operatorname{One-B} \stackrel{\operatorname{def}}{=} \{w \in \{A,B\}^* \mid |w|_B = 1\} \quad \not\in \operatorname{LT}$$

$$A^k B A^k \in \operatorname{One-B} \qquad A^k B A^k B A^k \not\in \operatorname{One-B}$$

$$F_k(\rtimes A^k B A^k \ltimes) = F_k(\rtimes A^k B A^k B A^k \ltimes)$$

Slide 21

Slide 22

		In	Out
LT	Some- B	A^iBA^j	A^{i+j+1}
non-LT	One-B	A^iBA^{j+k+1}	$A^iBA^jBA^k$

FO(+1) (Strings)

Models:
$$\langle \mathcal{D}, \triangleleft, P_{\sigma} \rangle_{\sigma \in \Sigma}$$

 $AABA = \left\langle \{0, 1, 2, 3\}, \{\langle i, i+1 \rangle \mid 0 \leq i < 3\}, \{0, 1, 3\}_A, \{2\}_B \right\rangle$

First-order Quantification (over positions in the strings)

$$x \triangleleft y \qquad w, [x \mapsto i, y \mapsto j] \models x \triangleleft y \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad j = i + 1$$

$$P_{\sigma}(x) \qquad w, [x \mapsto i] \models P_{\sigma}(x) \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad i \in P_{\sigma}$$

$$\varphi \wedge \psi \qquad \vdots \qquad \vdots$$

$$\neg \varphi \qquad \vdots$$

$$\exists x) [\varphi(x)] \qquad w, s \models (\exists x) [\varphi(x)] \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad w, s [x \mapsto i] \models \varphi(x)$$

$$(\exists x)[\varphi(x)] \qquad w, s \models (\exists x)[\varphi(x)] \iff w, s[x \mapsto i] \models \varphi(x)]$$

FO(+1)-Definable Stringsets: $L(\varphi) \stackrel{\text{def}}{=} \{ w \mid w \models \varphi \}.$

One-
$$B = L((\exists x)[B(x) \wedge (\forall y)[B(y) \rightarrow x \approx y]\,])$$

Character of the FO(+1) Definable Stringsets

Definition 4 (Locally Threshold Testable) A set L is Locally Threshold Testable (LTT) iff there is some k and t such that, for all $w, v \in \Sigma^*$:

if for all
$$f \in F_k(\rtimes \cdot w \cdot \ltimes) \cup F_k(\rtimes \cdot v \cdot \ltimes)$$

either $|w|_f = |v|_f$ or both $|w|_f \ge t$ and $|v|_f \ge t$,
then $w \in L \iff v \in L$.

Slide 23

Theorem 4 (Thomas) A set of strings is First-order definable over $\langle \mathcal{D}, \triangleleft, \mathcal{P}_{\sigma} \rangle_{\sigma \in \Sigma}$ iff it is Locally Threshold Testable.

Membership in an FO(+1) definable stringset depends only on the multiplicity of the k-factors, up to some fixed finite threshold, which occur in the string.

Cognitive interpretation of FO(+1)

• Any cognitive mechanism that can distinguish member strings from non-members of an FO(+1) stringset must be sensitive, at least, to the multiplicity of the length k blocks of events, for some fixed k, that occur in the presentation of the string, distinguishing multiplicities only up to some fixed threshold t.

- If the strings are presented as sequences of events in time, then this corresponds to being able count up to some fixed threshold.
- Any cognitive mechanism that is sensitive *only* to the multiplicity, up to some fixed threshold, (and, in particular, not to the order) of the length k blocks of events in the presentation of a string will be able to recognize *only* FO(+1) stringsets.

Probing the FO(+1) boundary

One- $B = L((\exists x)[B(x) \land (\forall y)[B(y) \rightarrow x \approx y]]) \in LTT$

No-B-after- $C \stackrel{\text{def}}{=} \{w \in \{A,B,C\}^* \mid \text{no B follows any C}\} \notin \text{LTT}$ $A^kBA^kCA^k$ and $A^kCA^kBA^k$ have exactly the same number of occurrences of every k-factor.

Slide 25

		In	Out
FO(+1)	One- B	A^iBA^{j+k+1}	$A^iBA^jBA^k$
non-FO(+1)	No- B -after- C	$A^iBA^jCA^k$	$A^iCA^jBA^k$
		$A^iBA^jBA^k$	
		$A^iCA^jCA^k$	

Precedence—Subsequences

Definition 5 (Subsequences)

$$v \sqsubseteq w \iff v = \sigma_1 \cdots \sigma_n \text{ and } w \in \Sigma^* \cdot \sigma_1 \cdot \Sigma^* \cdots \Sigma^* \cdot \sigma_n \cdot \Sigma^*$$

$$P_k(w) \stackrel{def}{=} \{ v \in \Sigma^k \mid v \sqsubseteq w \}$$

$$P_{\leq k}(w) \stackrel{def}{=} \{ v \in \Sigma^{\leq k} \mid v \sqsubseteq w \}$$

$$P_2(AABACA) = \{AA, AB, AC, BA, BC, CA\}$$

$$P_{\leq 2}(AABACA) = \{\varepsilon, A, B, C, AA, AB, AC, BA, BC, CA\}$$

Strictly Piecewise Stringsets—SP

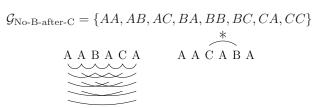
Strictly k-Piecewise Definitions

$$\mathcal{G} \subseteq \Sigma^{\leq k}$$

$$w \models \mathcal{G} \iff P_{\leq k}(w) \subseteq P_{\leq k}(\mathcal{G})$$

$$L(\mathcal{G}) \triangleq \{w \in \Sigma^* \mid w \models \mathcal{G}\}$$

Slide 27



Membership in an SP_k stringset depends only on the individual $(\leq k)$ -subsequences which occur in the string.

Character of the Strictly k-Piecewise Sets

Theorem 5 A stringset L is Strictly k-Piecewise Testable iff, for all $w \in \Sigma^*$,

$$P_{\leq k}(w) \subseteq P_{\leq k}(L) \Rightarrow w \in L$$

Slide 28 Consequences:

Prefix & Suffix Closure: $wv \in L \Rightarrow w, v \in L$ Subsequence Closure: $w\sigma v \in L \Rightarrow wv \in L$

Unit Strings: $P_1(L) \subseteq L$ Empty String: $L \neq \emptyset \Rightarrow \varepsilon \in L$

SP Hierarchy

Definition 6 (SP)

A stringset is Strictly k-Piecewise if it is definable with an SP_k definition.

A stringset is Strictly Piecewise (in SP) if it is SP_k for some k.

Theorem 6 (SP-Hierarchy)

Slide 29 $SP_2 \subseteq SP_3 \subseteq \cdots \subseteq SP_i \subseteq SP_{i+1} \subseteq \cdots \subseteq SP$

SP is incomparable (wrt subset) with the Local Hierarchy

$$\operatorname{SP}_2 \not\subseteq \operatorname{FO}(+1)$$
 No-*B*-after- $C \in \operatorname{SP}_2 - \operatorname{FO}(+1)$
 $\operatorname{SL}_2 \not\subseteq \operatorname{SP}$ $(AB)^n \in \operatorname{SL}_2 - \operatorname{SP}$
 $\operatorname{SP}_2 \cap \operatorname{SL}_2 \neq \emptyset$ $A^mB^n \in \operatorname{SP}_2 \cap \operatorname{SL}_2$
 $\operatorname{Fin} \not\subseteq \operatorname{SP}$ $\{A\} \in \operatorname{Fin} - \operatorname{SP}$

Cognitive interpretation of SP

• Any cognitive mechanism that can distinguish member strings from non-members of an SP_k stringset must be sensitive, at least, to the length k (not necessarily consecutive) sequences of events that occur in the presentation of the string.

- If the strings are presented as sequences of events in time, then this corresponds to being sensitive, at each point in the string, to up to k-1 events distributed arbitrarily among the prior events.
- Any cognitive mechanism that is sensitive *only* to the length k sequences of events in the presentation of a string will be able to recognize *only* SP_k stringsets.

Probing the SP boundary

No-B-after- $C \in \mathrm{SP}_2$

 $B\text{-before-}C \stackrel{\text{def}}{=} \{w \in \Sigma^* \mid \text{Some B occurs prior to any C}\} \quad \not\in \text{SP}$ $AABACA \in \text{B-before-C}, \quad AACA \sqsubseteq AABACA, \quad AACA \not\in \text{B-before-C}$

Slide 31

		In	Out
SP	No- B -after- C	$A^iBA^jCA^k$	$A^iCA^jBA^k$
		$A^iBA^jBA^k$	
		$A^iCA^jCA^k$	
	A^mB^n	$A^{i+k}B^{j+l}$	$A^i B^j A^k B^l$
non-SP	B-before- C	$A^iBA^jCA^k$	$A^iCA^jBA^k$
			$A^iCA^jCA^k$
	$(AB)^n$	$(AB)^{i+j+1}$	$(AB)^i AA (AB)^j$

k-Piecewise Testable Stringsets

 PT_k -expressions

$$\begin{array}{lll} p \in \Sigma^{\leq k} & w \models p & \stackrel{\mathrm{def}}{\Longleftrightarrow} & p \sqsubseteq w \\ \\ \varphi \wedge \psi & w \models \varphi \wedge \psi & \stackrel{\mathrm{def}}{\Longleftrightarrow} & w \models \varphi \text{ and } w \models \psi \\ \\ \neg \varphi & w \models \neg \varphi & \stackrel{\mathrm{def}}{\Longleftrightarrow} & w \not\models \varphi \end{array}$$

Slide 32

k-Piecewise Testable Languages (PT_k):

$$L(\varphi) \stackrel{\mathrm{def}}{=} \{w \in \Sigma^* \mid w \models \varphi\}$$

$$B\text{-before-}C = L(\neg C \vee BC) \qquad (= L(C \to BC))$$

Membership in an PT_k stringset depends only on the set of $(\leq k)$ -subsequences which occur in the string.

Character of Piecewise Testable sets

Theorem 7 (k-Subsequence Invariance) A stringset L is Piecewise Testable iff

there is some k such that, for all strings x and y,

Slide 33

if x and y have exactly the same set of $(\leq k)$ -subsequences

then either both x and y are members of L or neither is.

$$w \equiv_k^P v \stackrel{\text{def}}{\Longleftrightarrow} P_{\leq k}(w) = P_{\leq k}(v).$$

 $B\text{-before-}C = \bigcup\{[w]_2^P \mid w \in \{A,B\}^*, w \models (C \to BC) \text{ and } |w| \le 6\}.$

PT Hierarchy

Definition 7 (SP)

A stringset is k-Piecewise Testable if it is definable with an PT_k definition.

Slide 34

A stringset is Piecewise Testable (in PT) if it is PT_k for some k.

Theorem 8 (PT-Hierarchy)

$$PT_2 \subseteq PT_3 \subseteq \cdots \subseteq PT_i \subseteq PT_{i+1} \subseteq \cdots \subseteq PT$$

PT, SP and the Local Hierarchy

$$\begin{split} \operatorname{SP}_k \subsetneq \operatorname{PT}_k \\ \operatorname{SP}_{k+1} \not\subseteq \operatorname{PT}_k \\ \operatorname{PT}_2 \not\subseteq \operatorname{SP} \quad B\text{-before-}C, \operatorname{One-}B \in \operatorname{PT}_2 - \operatorname{SP} \\ \operatorname{PT}_2 \not\subseteq \operatorname{FO}(+1) \quad \operatorname{No-}B\text{-after-}C \in \operatorname{PT}_2 - \operatorname{FO}(+1) \\ \operatorname{SL}_2 \not\subseteq \operatorname{PT} \quad (AB)^n \in \operatorname{SL}_2 - \operatorname{PT} \\ \operatorname{PT}_2 \cap \operatorname{SL}_2 \neq \emptyset \quad A^mB^n \in \operatorname{PT}_2 \cap \operatorname{SL}_2 \\ \operatorname{Fin} \subseteq \operatorname{SP}: \\ \Sigma^* = L(\varepsilon), \quad \emptyset = L(\neg \varepsilon), \quad \{\varepsilon\} = L(\bigwedge_{\sigma \in \Sigma} [\neg \sigma]), \end{split}$$

 $\Sigma^* = L(\varepsilon), \quad \emptyset = L(\neg \varepsilon), \quad \{\varepsilon\} = L(\bigwedge_{\sigma \in \Sigma} [\neg \sigma])$ $\{w\} = L(w \land \bigwedge_{p \in \Sigma^{|w|+1}} [\neg p])$ $\{w\} = L(\bigvee_{\sigma \in \Sigma} [w, \land \land \land \land \vdash \neg p]]$

 $\{w_1, \dots, w_n\} = L(\bigvee_{1 \le i \le n} [w_i \land \bigwedge_{p \in \Sigma^{|w_i|+1}} [\neg p]])$

Cognitive interpretation of PT

• Any cognitive mechanism that can distinguish member strings from non-members of an PT_k stringset must be sensitive, at least, to the set of length k subsequences of events that occur in the presentation of the string—both those that do occur and those that do not.

Slide 36

- If the strings are presented as sequences of events in time, then this corresponds to being sensitive, at each point in the string, to the set of all length k subsequences of the sequence of prior events.
- Any cognitive mechanism that is sensitive only to the set of length k subsequences of events in the presentation of a string will be able to recognize only PT_k stringsets.

Probing the PT boundary

 $B\text{-before-}C, \mathsf{One}\text{-}B \in \mathsf{PT}_2$

 $(AB)^n \notin PT$

$$(AB)^k \in (AB)^n \qquad (AB)^k A \not\in (AB)^n$$

$$P_k((AB)^k A) = P_k((AB)^k)$$

Slide 37

		In	Out
PT	B-before- C	$A^iBA^jCA^k$	$A^iCA^jBA^k$
			$A^iCA^jCA^k$
	$\mathrm{One}\text{-}B$	A^iBA^{j+k+1}	$A^iBA^jBA^k$
non-PT	$(AB)^n$	$(AB)^{i+j+1}$	$(AB)^i AA (AB)^j$

First-Order(<) definable stringsets

$$\langle \mathcal{D}, \triangleleft^+, P_{\sigma} \rangle_{\sigma \in \Sigma}$$

First-order Quantification over positions in the strings

PT,
$$FO(+1)$$
 and $FO(<)$

Theorem 9 $PT \subsetneq FO(<)$.

$$\sigma_1 \cdots \sigma_n \sqsubseteq w \Leftrightarrow (\exists x_1, \dots, x_n) [\bigwedge_{1 \le i < j \le n} [x_i \triangleleft^+ x_j] \wedge \bigwedge_{1 \le i \le n} [P_{\sigma_i}(x_i)]$$

Slide 39 Theorem 10 $FO(+1) \subsetneq FO(<)$.

+1 is FO definable from <:

$$x \triangleleft y \equiv x \triangleleft^+ y \land \neg(\exists z)[x \triangleleft^+ z \land z \triangleleft^+ y]$$

No-B-after- $C \subseteq FO(<) - FO(+1)$
$$(AB)^n \subseteq FO(<) - PT$$

Star-Free stringsets

Definition 8 (Star-Free Set) The class of Star-Free Sets (SF) is the smallest class of languages satisfying:

• $Fin \subseteq SF$.

Slide 40

• If
$$L_1, L_2 \in SF$$
 then: $L_1 \cdot L_2 \in SF$,
$$L_1 \cup L_2 \in SF$$
,
$$\overline{L_1} \in SF$$
.

Theorem 11 (McNauthton and Papert) A set of strings is First-order definable over $\langle \mathcal{D}, \triangleleft^+, P_{\sigma} \rangle_{\sigma \in \Sigma}$ iff it is Star-Free.

PT and LT with Order

$$\varphi \bullet \psi \qquad w \models \varphi \bullet \psi \stackrel{\text{def}}{\Longleftrightarrow} w = w_1 \cdot w_2, \quad w_1 \models \varphi \text{ and } w_2 \models \psi.$$

 LTO_k is LT_k plus $\varphi \bullet \psi$

No-B-after-
$$C = L((\neg C) \bullet (\neg B)) \in LTO$$

Slide 41 PTO_k is PT_k plus $\varphi \bullet \psi$

Let:

$$\varphi_{A^{=i}} = A^i \wedge \bigwedge_{p \in \Sigma^{i+1}} [\neg p], \qquad \varphi_{\Sigma^*} = \varepsilon$$

Then:

$$(AB)^{n} = L(\neg(\varphi_{B^{-1}} \bullet \varphi_{\Sigma^{*}}) \wedge \neg(\varphi_{\Sigma^{*}} \bullet \varphi_{A^{-1}}) \wedge \\ \neg(\varphi_{\Sigma^{*}} \bullet \varphi_{A^{-2}} \bullet \varphi_{\Sigma^{*}}) \wedge \neg(\varphi_{\Sigma^{*}} \bullet \varphi_{B^{-2}} \bullet \varphi_{\Sigma^{*}})) \in PTO$$

PTO, LTO and SF

Theorem 12

$$PTO = SF = LTO$$

 $\mathbf{SF} \subseteq \mathbf{PTO}, \ \mathbf{SF} \subseteq \mathbf{LTO}$

Slide 42 $\mbox{Fin} \subseteq \mbox{PTO}, \mbox{Fin} \subseteq \mbox{LTO} \mbox{ and both are closed under concatenation,} \\ \mbox{union and complement.}$

 $\mathbf{LTO}\subseteq\mathbf{PTO}\subseteq\mathbf{SF}$

Concatenation is FO(<) definable.

Character of FO(<) definable sets

Theorem 13 (McNaughton and Papert) A stringset L is definable by a set of First-Order formulae over strings iff it is recognized by a finite-state automaton that is non-counting (that has an aperiodic syntactic monoid), that is, iff:

there exists some n>0 such that $for \ all \ strings \ u,v,w \ over \ \Sigma$ $if \ uv^n w \ occurs \ in \ L$ $then \ uv^{n+i}w, \ for \ all \ i\geq 1, \ occurs \ in \ L \ as \ well.$

E.g.

Slide 43

people who were left (by people who were left)ⁿ left $\in L$ people who were left (by people who were left)ⁿ⁺¹ left $\in L$

Cognitive interpretation of FO(<)

• Any cognitive mechanism that can distinguish member strings from non-members of an FO(<) stringset must be sensitive, at least, to the sets of length k blocks of events, for some fixed k, that occur in the presentation of the string when it is factored into segments, up to some fixed number, on the basis of those sets with distinct criteria applying to each segment.

- If the strings are presented as sequences of events in time, then this corresponds to being able to count up to some fixed threshold with the counters being reset some fixed number of times based on those counts.
- Any cognitive mechanism that is sensitive only to the sets of length k blocks of events in the presentation of a string once it has been factored in this way will be able to recognize only FO(<) stringsets.

Probing the FO(<) boundary

BB-before- $C \in FO(<)$

Even-
$$B \stackrel{\text{def}}{=} \{ w \in \{A, B\}^* \mid |w|_B = 2i, \ 0 \le i \} \notin \text{FO}(<)$$

Slide 45

 $A^iB^nB^n\in \text{Even-}B\quad \text{ but } \quad A^iB^{n+1}B^n\not\in \text{Even-}B$

		In	Out
FO(<)	BB-before- C	$A^iBBA^{j+k}CA^l$	$A^iCA^{j+k}BBA^l$
			$A^iBA^jBA^kCA^l$
non-FO(<)	Even- B	B^{2i}	B^{2i+1}

MSO definable stringsets

$$\langle \mathcal{D}, \triangleleft, \triangleleft^+, P_{\sigma} \rangle_{\sigma \in \Sigma}$$

Slide 46 First-order Quantification (positions)

Monadic Second-order Quantification (sets of positions)

 \triangleleft^+ is MSO-definable from \triangleleft .

Slide 47

MSO example

$$(\exists X_0, X_1)[(\forall x)[(\exists y)[y \triangleleft x] \lor X_0(x)] \land (\forall x, y)[\neg(X_0(x) \land X_1(x))] \land (\forall x, y)[x \triangleleft y \rightarrow (X_0(x) \leftrightarrow X_1(y)] \land (\forall x)[(\exists y)[x \triangleleft y] \lor X_1(x)]$$

Theorem 14 (Chomsky Schützenberger) A set of strings is Regular iff it is a homomorphic image of a Strictly 2-Local set.

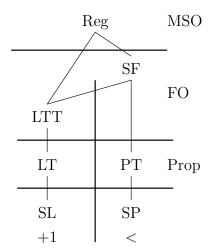
Definition 9 (Nerode Equivalence) Two strings w and v are Nerode Equivalent with respect to a stringset L over Σ (denoted $w \equiv_L v$) iff for all strings u over Σ , $wu \in L \Leftrightarrow vu \in L$.

Slide 48 Theorem 15 (Myhill-Nerode) A stringset L is recognizable by a FSA (over strings) iff \equiv_L partitions the set of all strings over Σ into finitely many equivalence classes.

Theorem 16 (Medvedev, Büchi, Elgot) A set of strings is MSO-definable over $\langle \mathcal{D}, \triangleleft, \triangleleft^+, P_{\sigma} \rangle_{\sigma \in \Sigma}$ iff it is regular.

Theorem 17 $MSO = \exists MSO \ over \ strings.$

Local and Piecewise Hierarchies



Slide 49

Cognitive interpretation of Finite-state

• Any cognitive mechanism that can distinguish member strings from non-members of a finite-state stringset must be capable of classifying the events in the input into a finite set of abstract categories and are sensitive to the sequence of those categories.

- Subsumes *any* recognition mechanism in which the amount of information inferred or retained is limited by a fixed finite bound.
- Any cognitive mechanism that has a fixed finite bound on the amount of information inferred or retained in processing sequences of events will be able to recognize *only* finite-state stringsets.

Probing the FS boundary

$$\begin{split} \text{Even-B} &\stackrel{\text{def}}{=} \{w \in \{A,B\}^* \mid |w|_B = 2i, \, 0 \leq i\} \in \text{FS} \\ & \{A^n B^n \mid n > 0\} \not \in \text{FS} \\ & w \equiv_{A^n B^n} v \; \Leftrightarrow \; w, v \not \in \{A^i B^j \mid i, j \geq 0\} \text{ or } \\ & |w|_A - |w|_B = |v|_A - |v|_B \,. \end{split}$$

Slide 51

Slide 52

FS Even-B B^{2i} B^{2i+1} non-FS A^nB^n A^nB^n $A^{n-1}B^{n+1}$

Non-FS classes

Additional structure — not finitely bounded

$$A^nB^n$$

$$D_1 = |w|_A = |w|_B$$
, properly nested

$$D_2 = |w|_A = |w|_B$$
 and $|w|_C = |w|_D$, properly nested.

Subregular Hierarchy over Trees

$$CFG = SL_2 < LT < FO(+1) < FO(<) < MSO = FSTA$$

FLT support for AGL experiments

Model-theoretic characterizations

- very general methods for describing patterns
- provide clues to nature of cognitive mechanisms
- independent of $a\ priori$ assumptions

Grammar- and Automata-theoretic characterizations

Slide 53

- provide information about nature of stringsets
- minimal pairs

Sub-regular hierarchies

- broad range of capabilities weaker than human capabilities
- characterizations in terms of plausible cognitive attributes
- relevant as long as generalizations are based on structure of strings

References

Beauquier, D., and Jean-Eric Pin. 1991. Languages and scanners. *Theoretical Computer Science* 84:3–21.

- Büchi, J. Richard. 1960. Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 6:66–92.
- Chomsky, Noam, and M. P. Schützenberger. 1963. The algebraic theory of context-free languages. In *Computer programming and formal systems*, ed. P. Braffort and D. Hirschberg, Studies in Logic and the Foundations of Mathematics, 118–161. Amsterdam: North-Holland, 2nd (1967) edition.
- Elgot, Calvin C. 1961. Decision problems of finite automata and related arithmetics. *Transactions of the American Mathematical Society* 98:21–51.
- García, Pedro, and José Ruiz. 1996. Learning k-piecewise testable languages from positive data. In *Grammatical Interference: Learning Syntax from Sentences*, ed. Laurent Miclet and Colin de la Higuera, volume 1147 of *Lecture Notes in Computer Science*, 203–210. Springer.
- Heinz, Jeffrey. 2007. The inductive learning of phonotactic patterns. Doctoral Dissertation, University of California, Los Angeles.
- Heinz, Jeffrey. 2008. Learning long distance phonotactics. Submitted manuscipt.
- Heinz, Jeffrey. to appear. On the role of locality in learning stress patterns. Phonology.
- Kontorovich, Leonid, Corinna Cortes, and Mehryar Mohri. 2006. Learning linearly separable languages. In *The 17th International Conference on Algorithmic Learning Theory (ALT 2006)*, volume 4264 of Lecture Notes in Computer Science, 288–303. Springer, Heidelberg, Germany.
- Lothaire, M., ed. 2005. Applied combinatorics on words. Cambridge University Press, 2nd edition.
- McNaughton, R., and S. Papert. 1971. Counter-free automata. MIT Press.
- Perrin, Dominique, and Jean-Eric Pin. 1986. First-Order logic and Star-Free sets. *Journal of Computer and System Sciences* 32:393–406.
- Rogers, James. 2003. wMSO theories as grammar formalisms. *Theoretical Computer Science* 293:291–320.
- Rogers, James, Jeffery Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher, David Wellcome, and Sean Wibel. 2009. On languages piecewise testable in the strict sense. In *Preproceedings of 11th Meeting on Mathematics of Language*. Bielefeld, Germany. To Appear.
- Rogers, James, and Geoffrey Pullum. 2007. Aural pattern recognition experiments and the subregular hierarchy. In *Proceedings of 10th Mathematics of Language Conference*, ed. Marcus Kracht, 1–7. University of California, Los Angeles.
- Simon, Imre. 1975. Piecewise testable events. In Automata Theory and Formal Languages: 2nd Grammatical Inference conference, 214–222. Berlin; New York: Springer-Verlag.
- Thomas, Wolfgang. 1982. Classifying regular events in symbolic logic. *Journal of Computer and Systems Sciences* 25:360–376.