1

Potential Distinguishing Characteristics of Human Aural Pattern Recognition James Rogers[†] and Marc D. Hauser[‡]

[†] Dept. of Computer Science Earlham College this work completed, in part, while at the Radcliffe Institute for Advanced Study

[‡]Depts. of Psychology, Oganismic & Evolutionary Biology and Biological Anthropolgy Harvard University

	We hypothesize that FLN only includes recursion
Slide 2	and is the only uniquely human component of the
	faculty of language.

Hauser, Chomsky and Fitch, Nature, v. 298, 2002.

Slide 1

Slide 3

The Comparative Approach to Language Evolution

• Shared vs. unique

- Homologous vs. analogous

- Gradual vs. saltational
- Continuity vs. exaption

Three Hypotheses

- 1. FLB is strictly homologous to animal communication
- Slide 4
- 2. FLB is a derived, uniquely human adaptation for language
- 3. Only FLN is uniquely human

Slide 5

Empirical support for the comparative method

- Across species
- Domains other than (just) communication
- Spontaneous and trained behaviors

Contrasting $(AB)^n$ with A^nB^n

- $\bullet\,$ Finite State vs. Context-Free
- { $(\operatorname{ding dong})^n$ } vs. { $\operatorname{people}^n \operatorname{left}^n$ }
- Slide 6
- ${\text{those people who were left}}$
- *vs*.

• *vs*.

 ${\bf those people who were left(by people who were left)^{2n} left}$

Slide 7

Dual Characterizations of Classes of Patterns

Descriptive characterizations

- Nature of the information about strings
- Independent of mechanism
- Support conclusions about abstract properties of mechanisms

Grammar- and automata-theoretic characterizations

- Concrete algorithm s
- Support reasoning about the structure of stringsets
- Guide experimental design

Strictly Local Stringsets

2-factors:
$$\mathcal{G}_{(AB)^n} = \{ \rtimes A, AB, BA, B \ltimes \}$$

 $\rtimes ABABAB \ltimes \rtimes ABBAB \ltimes$

Strictly k-Local Definitions

Slide 8

$$\mathcal{G} \subseteq F_k(\{\rtimes\} \cdot \Sigma^* \cdot \{\ltimes\})$$
$$w \models \mathcal{G} \stackrel{\text{def}}{\Longleftrightarrow} F_k(\rtimes \cdot w \cdot \ltimes) \subseteq \mathcal{G}$$
$$L(\mathcal{G}) \stackrel{\text{def}}{=} \{w \mid w \models \mathcal{G}\}$$

Membership in an SL_k stringset depends only on the individual k-factors which do and do not occur in the string.

Recognizing an SL_k string set requires only remembering the k most recently encountered symbols.

Character of Strictly 2-Local Sets

Theorem (Suffix Substitution Closure):

A stringset L is strictly 2-local iff whenever there is a word x and strings w, y, v, and z, such that

Slide 10 then it will also be the case that

$$w \quad \cdot \quad x \quad \cdot \quad z \quad \in L$$

Example:

The dog	·	likes	·	the biscuit	$\in L$
Alice	•	likes	•	Bob	$\in L$
The dog		likes		Bob	$\in L$

	Some-B $\stackrel{\text{def}}{=} \{ w \in \{A, B\}^* \mid w _B \ge 1 \}$					
	<i>A</i>	$A \cdot \underbrace{A}_{h}$	$A \cdot BA$.	$\ldots A \in \text{Some-B}$		
01.1 11	$A \dots A$	$B \cdot \underbrace{A}_{k}$	$A \cdot A \cdots$	$A \in \text{Some-B}$		
Slide 11	$AA \cdot \underbrace{AA}_{k-1} \cdot AA \notin \text{Some-E}$					
			In	Out		
	SL	$(AB)^n$	$(AB)^{i+j+1}$	$(AB)^i AA (AB)^j$		
		$A^m B^n$	$A^{i+k}\overline{B^{j+l}}$	$A^i B^j \overline{A^k B^l}$		
	non-SL	Some-B	$A^i B A^j$	A^{i+j+1}		

Probing the SL Boundary

Locally *k*-Testable Stringsets

Some-B: $\neg(\neg \rtimes B \land \neg AB) \quad (= \rtimes B \lor AB)$

 $k\text{-}\mathrm{Expressions}$

$$\begin{array}{ccc} f \in F_k(\rtimes \cdot \Sigma^* \ltimes) & w \models f & \stackrel{\mathrm{def}}{\iff} & f \in F_k(\rtimes \cdot w \cdot \ltimes) \\ \varphi \wedge \psi & w \models \varphi \wedge \psi & \stackrel{\mathrm{def}}{\iff} & w \models \varphi \text{ and } w \models \psi \\ \neg \varphi & w \models \neg \varphi & \stackrel{\mathrm{def}}{\iff} & w \not\models \varphi \end{array}$$

Slide 12

Locally k-Testable Languages (LT_k) :

$$L(\varphi) \stackrel{\mathrm{def}}{=} \{ w \mid w \models \varphi \}$$

Membership in an LT_k string set depends only on the set of k-Factors which occur in the string.

LT Automata

Recognizing an LT_k stringset requires only remembering which k-factors occur in the string.

Character of Locally Testable Sets

Theorem (k-Test Invariance):

A stringset L is Locally Testable iff

Slide 14

there is some k such that, for all strings x and y,

if $\rtimes \cdot x \cdot \ltimes$ and $\rtimes \cdot y \cdot \ltimes$ have exactly the same set of k-factors

then either both x and y are members of L or neither is.

Some-B = $\{w \in \{A, B\}^* \mid w \models \times$	$ AB \lor AB \} (\in LT_2) $
One-B $\stackrel{\text{def}}{=} \{ w \in \{A, B\}^* \mid x \in \{A, B\}^* \}$	$w _B = 1\} \not\in \mathrm{LT}$
$\begin{aligned} A^{k}BA^{k} \in \text{One-B} \\ F_{k}(\rtimes A^{k}BA^{k}\ltimes) = F_{k}(\rtimes A \end{aligned}$	$A^{k}BA^{k}BA^{k} \not\in \text{One-B}$ $^{k}BA^{k}BA^{k} \ltimes)$

Probing the LT Boundary

Slide 15

		In	Out
LT	Some-B	$A^i B A^j$	A^{i+j+1}
non-LT	One-B	$A^i B A^{j+k+1}$	$A^i B A^j B A^k$

FO(+1) (Strings) $AABA \models (\forall x)[A(x) \lor B(x)] \land (\exists x)[B(x)]$ $\langle \mathcal{D}, \triangleleft, P_{\sigma} \rangle_{\sigma \in \Sigma}$ $AABA = \left\langle \{0, 1, 2, 3\}, \{\langle i, i+1 \rangle \mid 0 \leq i < 3\}, \{0, 1, 3\}_{A}, \{2\}_{B} \right\rangle$ First-order Quantification (over positions in the strings) $x \triangleleft y \quad w, [x \mapsto i, y \mapsto j] \models x \triangleleft y \quad \stackrel{\text{def}}{\iff} \quad j = i+1$ $P_{\sigma}(x) \qquad w, [x \mapsto i] \models P_{\sigma}(x) \quad \stackrel{\text{def}}{\iff} \quad i \in P_{\sigma}$ $\varphi \land \psi \qquad \vdots$ $(\exists x)[\varphi(x)] \qquad w, s \models (\exists x)[\varphi(x)] \quad \stackrel{\text{def}}{\iff} \quad w, s[x \mapsto i] \models \varphi(x)]$ for some $i \in \mathcal{D}$

 $\mathrm{FO}(+1)\text{-}\mathrm{Definable\ Stringsets:\ }L(\varphi) \stackrel{\mathrm{def}}{=} \{w \mid w \models \varphi\}.$

Character of the FO(+1) Definable Stringsets

Definition 1 (Locally Threshold Testable) A set L is Locally Threshold Testable (LTT) iff there is some k and t such that, for all $w, v \in \Sigma^*$:

if for all $f \in F_k(\rtimes \cdot w \cdot \ltimes) \cup F_k(\rtimes \cdot v \cdot \ltimes)$ either $|w|_f = |v|_f$ or both $|w|_f \ge t$ and $|v|_f \ge t$,

Slide 17

Slide 18

then $w \in L \iff v \in L$.

Theorem 1 (Thomas) A set of strings is First-order definable over $\langle \mathcal{D}, \triangleleft, P_{\sigma} \rangle_{\sigma \in \Sigma}$ iff it is Locally Threshold Testable.

Membership in an FO(+1) definable stringset depends only on the multiplicity of the k-factors, up to some fixed finite threshold, which occur in the string.

Probing the LTT Boundary

 $\text{One-B} = \{ w \in \{A, B\}^* \mid w \models (\exists x)[B(x) \land (\forall y)[B(y) \to x \approx y]] \} (\in \text{LTT})$

B-before-C $\stackrel{\text{def}}{=} \{w \in \{A, B, C\}^* \mid \text{at least one B precedes any C}\} \notin \text{LTT}$ $A^k B A^k C A^k$ and $A^k C A^k B A^k$ have exactly the same number of

occurrences of every k-factor.

		In	Out
LTT	One-B	$A^i B A^{j+k+1}$	$A^i B A^j B A^k$
non-LTT	B-before-C	$A^i B A^j C A^k$	$A^i C A^j B A^k$

FO(<) (Strings)

$$\begin{split} &ABACA \models (\exists x) [\ C(x) \to (\exists y) [B(y) \land y \triangleleft^+ x] \] \\ &\langle \mathcal{D}, \triangleleft, \triangleleft^+, P_\sigma \rangle_{\sigma \in \Sigma} \end{split}$$

First-order Quantification over positions in the strings

Locally Testable with Order (LTO_k)

 LT_k plus

Slide 20

$$\begin{split} \varphi \bullet \psi & w \models \varphi \bullet \psi \stackrel{\text{def}}{\Longleftrightarrow} w = w_1 \cdot w_2, \quad w_1 \models \varphi \text{ and } w_2 \models \psi. \\ \text{B-before-C:} & (\rtimes B \lor AB \bullet \rtimes C \lor AC) \lor \neg (\rtimes C \lor AC \lor BC) \end{split}$$

Definition 2 (Star-Free Set) The class of Star-Free Sets (SF) is the smallest class of languages satisfying:

- $\emptyset \in SF$, $\{\varepsilon\} \in SF$, and $\{\sigma\} \in SF$ for each $\sigma \in \Sigma$.
- If $L_1, L_2 \in SF$ then: $L_1 \cdot L_2 \in SF$, $L_1 \cup L_2 \in SF$, $\overline{L_1} \in SF$.

Theorem 2 (McNauthton and Papert) A set of strings is First-order definable over $\langle \mathcal{D}, \triangleleft, \triangleleft^+, P_{\sigma} \rangle_{\sigma \in \Sigma}$ iff it is Star-Free.

Character of FO(<) Definable Sets

Theorem (McNaughton and Papert):

A stringset L is definable by a set of First-Order formulae over strings iff it is recognized by a finite-state automaton that is *non-counting* (that has an *aperiodic* syntactic monoid), that is, iff:

there exists some n > 0 such that

for all strings u, v, w over Σ

Slide 21

if $uv^n w$ occurs in L

then $uv^{n+i}w$, for all $i \ge 1$, occurs in L as well.

E.g.

those people who were left (by people who were left) ^{n} left			
those people who were left (by people who were left) $^{n+1}$ left	$\in L$		

A Characterization via ANNs

Binary valued Artificial Neural Nets

Buzzer-free: no inhibitory feedback.

Almost loop-free: no loops including more than one neuron or delay greater than one.

Slide 22

Probing the LT0 Boundary

 $\text{B-before-C} = \{ w \in \{A, B\}^* \mid w \models (\exists x) [C(x) \rightarrow (\exists y) [B(y) \land y < x] \,] \} (\in \text{LTO})$

Even-B $\stackrel{\mbox{def}}{=} \{w \in \{A,B\}^* \mid \left|w\right|_B = 2i, \, 0 \leq i\} \not\in {\rm LTT}$

Slide 23

 $A^iB^nB^n \in \text{Even-B} \quad \text{but} \quad A^iB^{n+1}B^n \not\in \text{Even-B}$

		In	Out
LTO	B-before-C	$A^i B A^j C A^k$	$A^i C A^j B A^k$
non-LTO	Even-B	B^{2i}	B^{2i+1}

MSO (Strings)

 $\langle \mathcal{D}, \triangleleft, \triangleleft^+, P_\sigma \rangle_{\sigma \in \Sigma}$

First-order Quantification (positions)

Monadic Second-order Quantification (sets of positions)

 \triangleleft^+ is MSO-definable from $\triangleleft.$

MSO Example

$$\begin{array}{ll} (\exists X_0) [& (\forall x) [(\exists y) [y \triangleleft x] \lor X_0(x)] \land \\ & (\forall x, y) [x \triangleleft y \rightarrow (X_0(x) \leftrightarrow \neg (X_0(y))] \land \\ & (\forall x) [(\exists y) [x \triangleleft y] \lor \neg (X_0(x))] \end{array}$$

Slide 25

c	b	a	b	с	b
X_0	$\overline{X_0}$	X_0	$\overline{X_0}$	X_0	$\overline{X_0}$

Theorem 3 (Chomsky Shützenberger) A set of strings is Regular iff it is a homomorphic image of a Strictly 2-Local set.

Definition (Nerode Equivalence) Two strings w and v are Nerode Equivalent with respect to a stringset L over Σ (denoted $w \equiv_L v$) iff for all strings u over Σ , $wu \in L \Leftrightarrow vu \in L$.

Slide 26

Theorem 4 (Myhill-Nerode) A stringset L is recognizable by a FSA (over strings) iff \equiv_L partitions the set of all strings over Σ into finitely many equivalence classes.

Theorem 5 (Büchi, Elgot) A set of strings is MSO-definable over $\langle \mathcal{D}, \triangleleft, \triangleleft^+, P_{\sigma} \rangle_{\sigma \in \Sigma}$ iff it is regular.

Even-B $\stackrel{\text{def}}{=} \{ w \in \{A, B\}^* \mid w _B = 2i, 0 \leq i \} \in \text{FS}$
$\{A^n B^n \mid n > 0\} \notin \mathrm{FS}$
$w \equiv_{A^n B^n} v \iff w, v \notin \{A^i B^j \mid i, j \ge 0\}$ or
$ w _A - w _B = v _A - v _B$.

Probing the FS Boundary

		In	Out
\mathbf{FS}	Even-B	B^{2i}	B^{2i+1}
non-FS	$A^n B^n$	$A^n B^n$	$A^{n-1}B^{n+1}$

Slide 27

Testing $A^n B^n$

Slide 28

Context-Free

Additional structure — not finitely bounded $A^n B^n$ $D_1 = |w|_A = |w|_B$, properly nested $D_2 = |w|_A = |w|_B$ and $|w|_C = |w|_D$, properly nested.

Slide 29

Slide 30

Subregular Hierarchy over Trees

$$CFG = SL_2 < LT < FO(+1) < FO(<) < MSO = FSTA$$

Conclusions

FLT support for aural pattern recognition experiments

Model-theoretic characterizations

- very general methods for describing patterns
- provide clues to nature of cognitive mechanisms
- independent of a priori assumptions
- Grammar- and Automata-theoretic characterizations
- provide information about nature of stringsets
- minimal pairs

Sub-regular hierarchy

- broad range of capabilities weaker than human capabilities
- characterizations in terms of plausible cognitive attributes

References

- Beauquier, D., and Jean-Eric Pin. 1991. Languages and scanners. Theoretical Computer Science 84:3–21.
- Büchi, J. Richard. 1960. Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 6:66–92.
- Chomsky, Noam, and M. P. Schützenberger. 1963. The algebraic theory of context-free languages. In *Computer programming and formal systems*, ed. P. Braffort and D. Hirschberg, Studies in Logic and the Foundations of Mathematics, 118–161. Amsterdam: North-Holland, 2nd (1967) edition.
- Elgot, Calvin C. 1961. Decision problems of finite automata and related arithmetics. *Transactions of the American Mathematical Society* 98:21–51.
- McNaughton, Robert, and Seymour Papert. 1971. *Counter-free automata*. Cambridge, MA: MIT Press.
- Perrin, Dominique, and Jean-Eric Pin. 1986. First-Order logic and Star-Free sets. *Journal of Computer and System Sciences* 32:393–406.
- Rogers, James. 2003. wMSO theories as grammar formalisms. *Theoretical Computer Science* 293:291–320.
- Thomas, Wolfgang. 1982. Classifying regular events in symbolic logic. Journal of Computer and Systems Sciences 25:360–376.