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ABSTRACT
Facial Emotion Recognition (FER) is a growing field in machine
learning with applications across healthcare, education, and human-
computer interaction. However, current FER systems exhibit de-
mographic biases that limit their precision and fairness between
different populations. In this project, I propose a deep learning-
based FER system that incorporates bias mitigation strategies, such
as dataset re-weighting, fairness-aware loss functions, and trans-
fer learning. I evaluate the model on diverse datasets, including
FER2013 and RAF-DB, to measure its effectiveness in improving
recognition accuracy across ethnicities, age groups, and genders.
My research aims to contribute to the development of ethical and
inclusive FER systems.
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Graphical Abstract: Overview of the proposed FER system
with integrated bias mitigation and transfer learning strate-
gies.

1 INTRODUCTION
Facial Emotion Recognition (FER) is a subfield of artificial intelli-
gence that seeks to automatically classify human emotions from
facial expressions. It has broad applications in healthcare, human-
computer interaction, and behavioral analysis. Despite significant
advances in deep learning, FER models continue to suffer from
demographic biases, leading to inconsistent performance across
different ethnicities, age groups, and genders [11, 21, 22].

These biases primarily stem from imbalanced training datasets
and algorithmic limitations [13, 25]. Addressing these biases is
crucial for equitable AI systems, as biased FER models can perpetu-
ate social inequities and lead to harmful consequences [22].

In this study, I propose a bias-mitigated FER model designed
to accurately recognize seven basic emotions while integrating
fairness-aware training strategies and leveraging transfer learn-
ingwithResNet-50 [23]. Themethodology includes re-weighting
loss functions and a multi-dataset training strategy by inte-
grating FER-2013, RAF-DB, and ExpW, with plans to include Af-
fectNet. I evaluate the model’s performance using demographic
parity and F1-score, informed by demographic data inferred using
established methods.

2 LITERATURE REVIEW
2.1 Introduction
Emotion recognition using machine learning techniques is a rapidly
evolving research area with broad applications in human-computer
interaction, healthcare, and adaptive learning. The primary goal is
to label and categorize various inputs— such as facial expressions,
text, and speech—to interpret human emotional states accurately.
Recent advances have seen the emergence of hybrid deep learning
models, including CNNs combined with recurrent architectures,
which enhance accuracy [1, 7].

2.2 Methods of Data Collection
The quality of collected data—both visual and, in some cases, au-
dio—is fundamental to developing robust FER systems. Mixed data
collection methods enhance generalizability:

• Regional and Cultural Bias: Research indicates that mod-
els trained on datasets from one region (e.g., North America)
may perform poorly on data from other cultural contexts.
For instance, Chen and colleagues demonstrated that mod-
els trained predominantly on North American data have
reduced performance on East Asian facial expressions [7].
Transfer learning techniques [1] allow pre-trained models
to be fine-tuned with region-specific data to alleviate such
bias.

• Image Acquisition: Standardized capture conditions (con-
trolled lighting, fixed frame rates, and consistent camera
setups) are essential. Automated pre-processing techniques
(e.g., facial alignment) further improve data quality.

• Database Creation: Datasets such as EmotioNet [4] and
others (e.g., RAF-DB) provide a mix of lab- controlled and
in-the-wild data, which, when merged, enhance model ac-
curacy and generalizability [18].

• Ethical Considerations: Collecting facial data requires ad-
herence to privacy regulations (e.g., GDPR) and mitigating
annotation biases, as labeling can be influenced by cultural
and gender factors [7].
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2.3 Data Processing
After data collection, raw images undergo pre-processing to en-
hance quality and compatibility:

• Normalization and Facial Alignment: Ensure consistent
input across samples.

• Data Augmentation: Techniques such as rotation, flip-
ping, and brightness adjustments prevent overfitting. The
OpenCV library provides many augmentation utilities [5].

• Feature Extraction:While advanced transforms are some-
times used, current practices rely primarily on deep feature
extraction via convolutional neural networks.

2.3.1 Transfer Learning for EnhancedGeneralization. Transfer learn-
ing leverages pre-trainedmodels (e.g., VGG-16, ResNet-50, Inception-
v3) to adapt to FER tasks. Fine-tuning these models, particularly
by freezing early layers and adapting higher layers, significantly
boosts accuracy when training data is limited [1].

2.3.2 Handling Imbalanced Datasets. Addressing class imbalance
is crucial for fair emotion recognition. Techniques such as resam-
pling and class weighting improve the learning of underrepresented
classes [7].

2.4 Advanced Bias Mitigation Approaches
Recent literature has also explored in-processing methods:

• Adversarial Debiasing: This method forces the learned
feature representations to be invariant to protected attributes.
Alvi et al. demonstrated the effectiveness of this approach
for removing bias from deep neural network embeddings
[2].

• Fairness-Aware Loss Functions: Incorporating fairness
constraints (e.g., via Demographic Parity Loss) directly into
the training loss can align feature distributions across demo-
graphics. Kolahdouzi and Etemad propose a kernel- based
approach for improved distribution alignment [19].

• Generative Counterfactuals and Meta-Learning: Den-
ton et al. used generative counterfactuals to expose and
mitigate bias [10], while recent meta-learning strategies
have been proposed to correct label bias [16, 28].

2.5 Summary and Future Directions
Effective FER requires robust data processing, transfer learning, and
integrated bias mitigation strategies. While re-weighting and data
augmentation provide a baseline improvement, advanced methods
such as adversarial debiasing and fairness-aware loss functions offer
deeper bias correction. Future research should focus on addressing
intersectional bias and standardizing fairness benchmarks in FER
systems.

3 DATASETS AND PREPROCESSING
3.1 Datasets
The datasets I used include ExpW, FER2013, RAF-DB, and a
planned integration of AffectNet. Table 1 summarizes these datasets
[4, 18].

Table 1: Summary of Datasets Used in the Study

Dataset No. of Images Emotion Classes Demographic
Bal-
ance

ExpW 90,000 7 Diverse,
internet-
collected
data.

FER2013 35,000 7 Class
imbal-
ance,
predom-
inantly
young
sub-
jects.

RAF-DB 30,000 7 + Compound High di-
versity
in race,
gender,
and age.

AffectNet (Planned) 1M+ 8 European-
American
bias
(67.3%).

3.2 Preprocessing Steps
Preprocessing includes resizing, normalization, and data augmenta-
tion to improve robustness and fairness. Augmentation techniques
include:

• Horizontal Flipping (mitigates pose bias).
• Rotation (±10◦-±15◦).
• Brightness and Contrast Adjustments.
• Cutout/Random Erasing (handles occlusions).

The OpenCV library provides many of these functionalities [5].

4 METHODS: DEMOGRAPHIC INFERENCE
To support bias analysis and mitigation in facial emotion recogni-
tion (FER), I inferred demographic attributes for the FER2013 and
RAF-DB datasets using the pretrained FairFace ResNet-34 model
[17]. FairFace is tailored to provide balanced demographic predic-
tions, making it ideal for sensitive bias assessments.

My inference process involved:
• Data Preparation: Images were resized to 224×224 pixels,

converted to grayscale, normalized to [0, 1], and stored as
.npy files in dataset-specific directories.

• ImageConversion:Grayscale .npy images were converted
back to RGB format after scaling pixel values to the 0–255
range using Python’s PIL library.

• Demographic Inference: FairFace’s ResNet-34 model pre-
dicted demographic attributes—gender (male, female), race
(White, Black, Latino/Hispanic, East Asian, Southeast Asian,
Indian, Middle Eastern), and age group (nine ranges)—for
each RGB image.
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• Results Storage: Predictions were structured into a CSV
file named inferred_demographics.csv, containing columns
for image_path, dataset, gender, race, and age.

These inferred demographics serve as foundational data for fur-
ther exploratory and bias-related analyses.

5 EXPLORATORY DATA ANALYSIS
The enriched FER dataset, combining FER2013 and RAF-DB subsets
I analyzed in this study (post-preprocessing and filtering), includes
40,982 records featuring the inferred demographic metadata de-
scribed in Section 4. My analysis below compares both subsets to
uncover similarities and differences relevant to bias analysis.

5.1 Dataset Composition
• FER2013: 28,709 samples
• RAF-DB: 12,273 samples

5.2 Gender Distribution
Both datasets demonstrate balanced gender distributions after in-
ference:

• FER2013: Female: 14,649 (51.0%), Male: 14,060 (49.0%)
• RAF-DB: Female: 6,078 (49.5%), Male: 6,195 (50.5%)

Figure 1: Gender distribution in FER2013 and RAF-DB based
on inferred labels.

5.3 Race Distribution
The racial composition varied significantly between the datasets,
based on FairFace inference:

• FER2013: Predominantly White (66.7%), followed by East
Asian (12.6%), Black (9.1%), Latino/Hispanic (5.3%), Middle
Eastern (2.4%), Southeast Asian (2.4%), and Indian (1.6%).

• RAF-DB: Primarily White (63.3%), followed by East Asian
(7.8%), Latino/Hispanic (7.7%), Black (6.9%), Southeast Asian
(5.1%), Middle Eastern (4.9%), and Indian (4.2%).

5.4 Age Distribution
The majority of subjects in both datasets fell within the 20–29 age
group, with notable variations in younger and middle-aged groups
based on inference:

Figure 2: Race distribution across FER2013 and RAF-DB
datasets based on inferred labels.

• FER2013: Dominated by 20–29 (45.7%), followed by 30–39
(16.6%), 3–9 (10.9

• RAF-DB: Highest in 20–29 (39.8%), with higher represen-
tation in younger age groups (0–2: 12.4%, 3–9: 14.3%) com-
pared to FER2013. Other groups follow similar patterns but
with slightly different proportions.

Figure 3: Age distribution differences between FER2013 and
RAF-DB based on inferred labels.

5.5 Summary and Implications for Bias
Mitigation

Key similarities across datasets based on inferred labels:
• Relatively balanced gender distribution.
• Predominance of the 20–29 age group.
• Majority of subjects inferred as White.

Notable differences based on inferred labels:
• FER2013 includes a higher proportion of individuals in-

ferred as East Asian and Black compared to RAF-DB.
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• RAF-DB shows slightly increased representation from groups
inferred as Latino/Hispanic, Southeast Asian, Middle East-
ern, and Indian.

• RAF-DB features greater diversity in the younger age groups
(0-2, 3-9).

These insights, derived from the inferred demographic data,
highlight potential sources of bias. The predominance of certain
groups (White, 20-29 age range) and the underrepresentation of
others necessitate targeted bias mitigation strategies. Techniques
like demographic-based re-weighting (Section 6) become crucial,
and fairness evaluations must be conducted across these specific
demographic categories to ensure equitable performance.

6 BIAS MITIGATION STRATEGIES
6.1 Re-weighting Techniques
To address imbalances revealed by the EDA (Section 5) and inherent
in the datasets, I apply:

• Class-Based Re-weighting: Assign higher loss weights
to underrepresented emotion classes.

• Demographic-BasedRe-weighting:Adjust sampleweights
based on inferred demographic attributes (gender, race, age)
to improve fairness across groups.

• Dynamic Loss Adjustment:Modify weights during train-
ing based on model confidence scores for different classes
or groups.

6.2 Fairness-Aware Loss Functions
Fairness-aware training methods for facial expression recognition
(FER) have begun to incorporate explicit loss terms or regularization
aimed at reducing bias across demographic groups. One common
approach is to add penalty terms based on fairness metrics such as
Demographic Parity or Equalized Odds, which enforce similar
prediction outcomes across protected groups [14]. For example, a
model can be penalized if its emotion classification outcomes differ
significantly between demographics, effectively treating fairness
objectives as additional loss constraints. In practice, implementing
such losses in FER is challenging due to multi-class outputs and
limited label availability for sensitive attributes, but the concept
has been explored in similar classification tasks [14]. Early research
in affective computing noted the potential of equality of odds con-
straints applied post-hoc to predictors, and recent fairness-driven
training strategies seek to integrate these constraints directly into
model learning [14].

Several recent works propose novel loss functions or training
frameworks explicitly aimed at mitigating bias in FER. ? ] intro-
duce an AU- Calibrated FER (AUC-FER) framework to reduce
annotation bias in emotion labels. Their method leverages facial
Action Units (AUs)—objective indicators of facial muscle move-
ments—to guide the learning process. By adding a calibration loss
that aligns the network’s predicted emotions with AU-based emo-
tion representations, the model is discouraged from relying on
demographic-specific annotation quirks. This effectively serves as a
fairness-aware loss: the network is penalized if its predictions devi-
ate from what the objectively measured AUs would suggest, which

helps correct biases arising from inconsistent or biased human
labels [? ].

Another line of work uses adversarial loss variants to learn
fair representations for FER. In adversarial training, a primary net-
work learns to classify emotions while an adversary attempts to
predict a protected attribute (e.g., gender or race) from interme-
diate features. The FER model is penalized when the adversary
succeeds, thus encouraging demographic-invariant features [24].
For instance, the FAIR-FERmodel proposed by Rizvi et al. [24] em-
ploys a composite loss function that includes a reconstruction loss,
an adversarial discriminator loss, and a perceptual loss to ensure
that the latent features do not encode protected attribute informa-
tion. This approach has demonstrated reduced performance gaps
between demographics with only a minor accuracy trade-off.

In a related vein, Suresh and Ong [27] propose a PositiveMatch-
ing Contrastive Loss tailored to mitigate bias in FER. Instead of
explicitly using protected attribute labels, their loss function guides
the model to focus on task- relevant facial features by leverag-
ing expert knowledge of facial anatomy (i.e., Action Units). By
weighting pairwise distances according to AU-based similarity,
the network learns an embedding where intraclass variance due
to demographic factors is reduced. Their method improved fair-
ness substantially—achieving near parity in performance across
groups—without requiring sensitive labels during training [27].

Finally, some methods integrate re-weighting strategies di-
rectly into the loss function to improve fairness. For example, Amini
et al. [3] propose a Debiasing Variational Autoencoder (DB-
VAE) that adaptively up-weights samples from minority groups
during training. Similarly, Singhal et al. [26] report that a class-
weighted cross-entropy loss, which gives higher weight to less
frequent emotion classes, helps alleviate bias and improves fair-
ness metrics in FER. Although class imbalance is not synonymous
with demographic bias, addressing it can indirectly mitigate biases
in FER datasets where certain emotions are underrepresented in
specific demographic groups.

In summary, fairness-aware loss functions in FER range from
incorporating classical fairness constraints (e.g., demographic par-
ity) to using adversarial losses and custom contrastive losses that
guide the model toward demographically invariant feature learning.
These techniques, used alone or in combination, have demonstrated
promising improvements in reducing bias across gender, race, and
age groups [24, 27? ].

7 MODEL ARCHITECTURE
Facial Emotion Recognition (FER) models require robust deep learn-
ing architectures to extract meaningful features while mitigating
bias. In this study, I evaluate two architectures: a baselineConvolu-
tional Neural Network (CNN) and a ResNet-50-based transfer
learning model.

7.1 Baseline CNN Architecture
The baseline CNN is trained from scratch with the following struc-
ture:

• Input: RGB images of shape (224, 224, 3) from FER2013 and
RAF-DB.

• Convolutional Layers:
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Table 2: Comparison of Bias Mitigation Strategies

Strategy Goal Technique

Re-weighting Balance impact Adjust loss func-
tion weights
(class/demographic).

Oversampling Improve representation Synthetic data gen-
eration, class balanc-
ing.

Fairness Loss Enforce fairness Adversarial debias-
ing, Demographic
Parity constraints,
Equalized Odds.

Input

Resizing, normalization, and data 
augmentation 

DATA PROCESSING

MODEL TRAINING
AND BIAS MITIGATION

Transfer learning, re-weighting 
techniques, and demographic data 
balancing

Retrain if needed

Emotion prediction

EVALUATION AND 
TESTING

Volunteer evaluation, feedback

Accuracy, fairness assessment 

Figure 4: System Architecture: End-to-end pipeline for Fa-
cial Emotion Recognition, including data preprocessing, de-
mographic inference, model training, bias mitigation, and
evaluation.

– Conv2D(32, kernel_size=(3,3), activation=’relu’)
→ MaxPooling2D(pool_size=(2,2))

– Conv2D(64, kernel_size=(3,3), activation=’relu’)
→ MaxPooling2D(pool_size=(2,2))

– Conv2D(128, kernel_size=(3,3), activation=’relu’)
→ MaxPooling2D(pool_size=(2,2))

• Fully Connected Layers:
– Flatten→ Dense(128, activation=’relu’)→ Dropout(0.5)
– Output: Dense(7, activation=’softmax’) (7 emo-

tion classes)
• Optimization: Categorical Crossentropy loss, Adam opti-

mizer (initial learning rate = 0.0001), trained for 10 epochs
with a batch size of 32.

7.2 Transfer Learning with ResNet-50
To improve generalization and reduce training time, I employResNet-
50, pre-trained on ImageNet:

• Base Model: ResNet-50 [23] with weights pre-trained on
ImageNet.

• Modifications:

– Remove the original fully connected classification layer.
– Freeze the weights of the early convolutional layers;

fine-tune the last 10 layers (or a specific block, e.g., the
final residual block and classification head).

– Append new layers: GlobalAveragePooling2D→ BatchNormalization
→ Dense(256, activation=’relu’)→ Dropout(0.5)
→ Output: Dense(7, activation=’softmax’).

• Training Strategy: Use a smaller initial learning rate (e.g.,
1×10−5) with Adam optimizer. Employ progressive learning
rate reduction (e.g., ReduceLROnPlateau callback) based on
validation loss to prevent overfitting during fine-tuning.

7.3 Architectural Considerations and Fairness
Deep transfer learning has become a cornerstone of modern FER
systems. A variety of convolutional neural network (CNN) architec-
tures pre-trained on large- scale face datasets are fine-tuned for emo-
tion recognition [12]. Common backbones include VGG-16/VGG-
19, ResNet-50, Inception (GoogLeNet), and MobileNet, each
offering trade-offs in performance, model size, and potential fair-
ness implications.

For instance, VGG-16 has historically been favored for its depth
and strong performance on benchmarks like FER2013, though its
high parameter count makes it computationally intensive [12].
ResNet-50, with its residual skip connections, not only matches or
exceeds VGG-16 in accuracy but is also more parameter efficient,
thereby easing the training of deeper networks [12]. In several
studies, ResNet-based FER models have demonstrated high recog-
nition accuracy—often around 72–73% on FER benchmarks—with
relatively lower bias across demographic groups compared to some
alternatives [12, 15].

In contrast, Inception architectures use parallel convolutional
paths to capture multi-scale features and have been shown to
achieve competitive accuracy, albeit slightly below that of VGG or
ResNet on FER datasets [12]. For scenarios requiring real-time per-
formance or deployment on resource-constrained devices, lighter
models like MobileNet and EfficientNet offer a compelling trade-
off. These architectures sacrifice a modest drop in accuracy for
significantly reduced computational demands and are particularly
appealing for real-time FER applications [12].

An emerging consideration is the impact of model architecture
on fairness. Recent work by Hosseini et al. [15] compared several
FER models—including ResNet-based CNNs and Vision Trans-
formers (ViT)—and found that ViTs exhibited higher bias (i.e.,
greater performance discrepancies across demographic groups)
compared to ResNet models in their experiments. This suggests that
beyond raw accuracy, architectural choices can influence the fair-
ness of FER systems. In addition, using pre-trained face recognition
models (e.g., models pre-trained on VGGFace2 or MS-Celeb-1M)
can enhance FER performance if the pre- training data is sufficiently
diverse, although bias present in the pre-training data may carry
over if not carefully corrected during fine-tuning [9, 20].

Ultimately, the choice among architectures depends on the ap-
plication context: high-end systems may favor the accuracy of
ResNet-50 or ensemble methods, while mobile applications may
lean toward lightweight models likeMobileNet. The decision should
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be informed not only by overall accuracy but also by fairness met-
rics across different demographic groups identified in the EDA
(Section 5) [12, 15].

8 TRAINING AND EVALUATION METRICS
8.1 Training Setup
I train the ResNet-50 based transfer learning model on a combined
dataset derived from FER2013 and RAF-DB using TensorFlow and
Keras with the following parameters:

• Input Shape: (224, 224, 3) RGB images.
• Batch Size: 128.
• Epochs: 10 (initial run, potentially more with early stop-

ping).
• Loss Function: Categorical Crossentropy.
• Optimizer: Adam (initial learning rate = 1× 10−5, reduced

dynamically using ReduceLROnPlateau).
• Validation Split: A portion of RAF-DB (or a dedicated

split) used for validation during training.
• Early Stopping: Implemented using ReduceLROnPlateau

callback monitoring validation loss (patience may vary, e.g.,
3 epochs).

• Augmentation: Applied during training: Horizontal Flip,
Rotation (±10◦), Zoom (e.g., 0.1 range), Brightness (e.g., 0.1
range), and Contrast Adjustments (e.g., 0.1 range).

8.2 Evaluation Metrics
I evaluate performance using standard metrics and fairness-specific
measures:

• Accuracy: Overall percentage of correct classifications.
• F1-Score (Weighted): Weighted average of precision and

recall, suitable for imbalanced classes.
• Confusion Matrix: Visual representation of prediction

distribution across actual vs. predicted emotion classes.
• Per-Group Accuracy/F1-Score: Accuracy and F1-score

calculated separately for different demographic groups (based
on inferred gender, race, age from Section 4) to assess fair-
ness.

• Demographic Parity Difference (DPD): Difference in
positive prediction rates between privileged and unprivi-
leged groups (can be adapted for multi-class FER).

• Equalized Odds Difference (EOD): Difference in true
positive rates (and false positive rates) between groups.

8.3 Training Performance (Illustrative Example)
Table 3 summarizes illustrative training and validation performance
after 10 epochs.

Table 3: Illustrative Training and Validation Performance
(ResNet-50 Transfer Learning, 10 Epochs)

Metric Training Validation

Accuracy 36.98% 37.90%
Loss 1.6250 1.7210

*Actual results depend heavily on dataset splits, augmentation,
fine-tuning strategy, and training duration.*

9 RESULTS AND DISCUSSION
In this section, I present the results obtained from training and
validating the FER model(s), analyzing performance trends, the ef-
fectiveness of bias mitigation strategies, and comparing the baseline
CNN with the ResNet-50 model based on the evaluation metrics
defined above, including fairness assessments across demographic
groups.

9.1 Model Performance Comparison
I compare the baseline CNN vs. ResNet-50 based on overall accu-
racy, F1-score, and potentially training time/resource usage. Initial
results, like the illustrative ones in Table 3, often show transfer
learning significantly improves accuracy over a simple CNN trained
from scratch, but require careful fine-tuning.

9.2 Training Trend Analysis
I analyze learning curves - training/validation accuracy and loss
over epochs. Fluctuations in validation loss might indicate overfit-
ting or need for learning rate adjustments. Steady improvement
suggests stable training, while plateaus might necessitate longer
training or changes in strategy.

9.3 Fairness Evaluation
I present accuracy/F1-scores broken down by the inferred demo-
graphic groups from Section 5. Differences in performance between
groups (e.g., lower accuracy for certain races or age groups) quan-
tify the bias. I discuss the effectiveness of bias mitigation techniques,
such as re-weighting or fairness-aware losses, by comparing per-
formance gaps before and after applying these methods.

9.4 Key Observations
• Transfer learning with ResNet-50 provides a significant

improvement over a CNN trained from scratch (pending
actual results).

• The EDA (Section 5) confirmed demographic imbalances
(race, age) in FER2013 and RAF-DB, underscoring the need
for mitigation.

• Biasmitigation strategies—especially demographic re-weighting,
adversarial debiasing and fairness-aware loss functions—show
promise for reducing performance gaps across groups [2,
13, 19] (effectiveness to be validated by experiments).

• Generative counterfactual techniques and meta-learning
approaches offer additional avenues for mitigating label
bias and improving fairness [10, 16, 28].

• Systematic evaluation of fairness using metrics like DPD
and EOD across diverse demographic groups is essential
but challenging for multi-class problems.

9.5 Expanded Discussion and Implications
Integrating the literature insights, EDA findings, and planned exper-
imental results offers valuable perspectives on my current method-
ology and potential improvements:
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• Validation of Current Methods:My approach employs
demographic inference (Section 4), EDA (Section 5) to iden-
tify biases, re-weighting, and a ResNet-50 transfer learning
framework (Section 7). The literature confirms re-weighting
can reduce disparities [26] and adversarial methods can pro-
mote invariant representations [24]. My experiments will
validate these techniques on my specific dataset combina-
tion and inferred demographics.

• Architectural Considerations: The choice of ResNet-50
is supported by studies showing its strong accuracy and
relatively lower bias compared to architectures like ViTs
[15]. My results (to be added) will provide further evidence
in the context of FER2013/RAF-DB. Future work could ex-
plore integrating Action Unit information [27] or compar-
ing with lightweight models like MobileNet if deployment
constraints exist.

• Opportunities for Enhancement: The literature survey
highlights advanced techniques like contrastive losses [27]
or multi-objective optimization. My current evaluation fo-
cuses on per-group accuracy/F1. Future iterations should
incorporate standardized fairness metrics like Equalized
Odds [14] and potentially use toolkits like Fairlearn for
more rigorous benchmarking [6, 8].

• Long-Term Research Directions: The need for standard-
ized fairness evaluation in FER is clear. My work, by in-
ferring demographics and performing group-wise analy-
sis, contributes to this. Addressing intersectional bias (e.g.,
older women of color [9]) identified through more granular
EDA on inferred labels, and ensuring scalability remain key
future goals.

In conclusion, my methodology combining demographic infer-
ence, EDA, established model architectures, and planned bias miti-
gation aligns with current research. My experimental results will
quantify the effectiveness of these choices and guide future im-
provements towards building high-performing and equitable FER
systems.

10 FUTUREWORK IN BIAS-MITIGATED FER
Despite progress, several challenges remain for achieving truly fair
and unbiased FER systems. Key directions for future work include:

• Addressing Intersectional Bias: Current research often
tackles bias one attribute at a time (e.g., gender or race).
However, intersectional groups (such as older women of
color) can experience compounded biases. Future FER sys-
tems should be evaluated on these intersections, necessitat-
ing the collection or annotation of datasets that adequately
represent such subgroups. Analyzing intersectional per-
formance using the inferred demographics is a first step.
Novel re-weighting methods or fairness constraints that ac-
count for multiple protected attributes simultaneously are
largely unexplored and represent a significant opportunity
for future research [9].

• Balancing Accuracy and Fairness Trade-offs: Increas-
ing fairness frequently comes at the expense of overall
accuracy. Research is needed to develop training methods
that minimize this trade-off. Multi-objective optimization

techniques that simultaneously maximize classification ac-
curacy while minimizing bias metrics (like DPD or EOD)
are promising, as are approaches such as fairness-aware
model calibration or causal inference methods to disentan-
gle task-relevant features from bias-related features. The
goal is to embed fairness into FER models without a signifi-
cant degradation in performance [26, 27].

• Standardized Fairness Benchmarks and Evaluation:
Unlike object recognition, FER currently lacks agreed-upon
benchmarks for assessing bias and fairness. The establish-
ment of standardized evaluation protocols—including bal-
anced benchmark datasets with reliable demographic labels
(or robust inference methods) and common fairness metrics
(e.g., true positive rate parity, equalized odds)—would facili-
tate more reliable comparisons across methods. A dedicated
fairness evaluation framework for FER, potentially inspired
by existing toolkits like Fairlearn, could drive progress in
this field [6, 8].

• Scalability to Real-World Conditions:Many bias mitiga-
tion techniques have been validated on relatively small or
controlled FER datasets. A pressing open question is how
these techniques scale to real-world systems that process
streaming video and diverse, uncontrolled inputs. Future
work should explore continual and federated learning ap-
proaches to ensure that fairness holds as data evolves over
time, as well as automated bias detection and monitoring
in large-scale FER deployments [12].

By pursuing these avenues—addressing intersectional bias, refin-
ing accuracy- fairness trade-offs, standardizing fairness evaluation,
and ensuring real-world scalability—future research can help bridge
the gap between academic FER models and equitable, deployable
systems.
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