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1 Introduction

The goal of this paper is to survey a sequence of formal results along with a
parallel sequence of their application to issues in Computational Linguistics.
The origins of the formal results date back to work by Biichi [3] and Elgot [10]
in the early ‘60’s which inter alia established a descriptive characterization of
the regular (string) languages—a characterization of the regular languages in
terms of logical definability over a particular class of model-theoretic structures:
a set of (finite) strings is regular iff it is definable, in a particular sense, within
the weak monadic second-order theory of the natural numbers with successor
(wS1S). This was extended ten years later by Doner [9] and Thatcher and
Wright [44] to a similar descriptive characterization of the recognizable sets of
trees and, consequently, the context-free (string) languages: a set of strings is
context-free iff it is the yield of a set of finite labeled trees that is definable
in the weak monadic second-order theory of multiple successors (wSnS). More
recently, we have generalized these results to obtain a characterization of the
Tree-Adjoining Languages [19, 21] in terms of a class of three-dimensional trees,
and thence to an infinite hierarchy of structures which serve to characterize a
parallel hierarchy of languages: Weir’s Control Language Hierarchy [47].

From a technical perspective the formal results are interesting, in part, be-
cause the involve application of automata theory to questions in pure model
theory. The results for regular and context-free languages were obtained on
the way to establishing decidability of the full monadic second-order theories.
(The result for the full MSO theory of multiple successors, SnS, was obtained
by Rabin [27].) The technique of the proof is to construct an automaton that
accepts all and only the set of satisfying assignments (represented as labeled
structures) for a given formula in the appropriate logical language. A formula,
then, is satisfiable iff the set recognized by the corresponding automaton is
non-empty. It remains only to establish the decidability of emptiness for these
recognizable sets.

In this way the formal results, in a sense, borrow results from Formal Lan-
guage Theory to obtain results in model theory. In doing so, they establish a
connection between logical definability and formal languages. From the per-
spective Formal Language Theory and, in particular, Computational Linguis-
tics what is attractive about this is the connection it can provide between
declarative (constraint- or principle-based) mechanisms for defining languages
and generative (grammar- and automata-based) mechanisms. This connection
not only provides a way of establishing language-theoretic complexity results
for declarative accounts of syntax but, more importantly, provides means of
comparing accounts in a theory-neutral context, of importing fragments of one
account into another and, at least potentially, of developing computational
mechanisms for processing the declarative accounts. In this way, by exploiting
the connection between definability and recognizability in the opposite direc-



tion we, in a sense, collect on the original debt.

Our focus, here, is not the formal results themselves nor even the details
of their applications. Rather, our intention is to give a sense of the range of
the results and, in particular, the way in which incremental extensions in the
model-theoretic domain correspond to increments in the power of the generative
mechanisms in the language-theoretic domain. Consequently, our treatment is
at quite a high level: we omit nearly all the proofs and many of the formal
details and provide, in their stead, references to papers in which the details
can be found.

In the next section we introduce our hierarchy of multi-dimensional trees,
along with their wMSO theories, grammars and automata, and sketch the
equivalences between these. The rest of the paper is organized as a tour in
which we visit classes of structures with increasing complexity, sketching their
application to a corresponding range of linguistic theories as we go. We start,
in Sections 3 and 5 with structures with finitely bounded branching, first
in two dimensions where we explore applications to Government and Binding
Theory, and then, after pausing, in 4, to sketch a notion of string yield for
higher-dimensional trees, we move to three dimensions, where we explore ap-
plications to Tree-Adjoining Grammar. In Section 6 we extend our results to
the w-branching structures. This allows us to treat, in two dimensions, GPSG
(Section 7) and, in three dimensions, a similarly generalized version of TAG
(Section 8). In Section 9 we bring it back together by sketching the equiva-
lence of the hierarchy as a whole to Weir’s hierarchy of control grammars. We
then close with some thoughts about the nature of the relationships between
the model-theoretic and language-theoretic results along with a glimpse of the
ongoing work in this area.

2 Multi-Dimensional Trees

The structures Biichi and Elgot used to model strings are just finite initial seg-
ments of the natural numbers, ordered by successor and labeled with a finite
set of monadic predicates (the symbols of the alphabet). Doner, Thatcher and
Wright, and Rabin lifted these structures to ordered, rooted trees by adopt-
ing multiple successor functions indexed by natural numbers. The immediate
successors of a point wrt these functions are its children in the tree, with the
left-to-right ordering of the children being imposed by the indices of the suc-
cessor functions. In a strong sense, this is as far as this approach goes. As
we will see shortly, for all n greater than one, the n-successor structures are
equivalent in the sense that they can all be embedded in the two-successor
structure. (This includes the w-successor structure.)

In order to generate a useful hierarchy with additional successors we must
interpret the successors differently. We take the children of a node to be a
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structure of the sort employed by Biichi and Elgot. We build local trees (trees
of depth at most one) by adding a single point and connecting it to each
of the nodes in the child structure by a single second-dimensional successor
relation. Thus the left-to-right ordering of the children is now explicit in the
first-dimensional successor rather than being implied by the ordering of multiple
second-dimensional successors.. We refer to the adjoined point as the root of the
local tree and the child structure as its yield. We include, as local trees, both the
empty tree (with neither root nor yield) and the trivial tree in which the yield
is empty. Trees of depth greater than one (composite trees) are constructed by
joining local trees, identifying the root of one with some point in the yield of
another. (See Figure 1.)

We can generalize this both downward, to the string—and even point—
structures, and upward to structures of arbitrary dimension. At the one-
dimensional (string) level the local structures are just pairs of points (or possi-
bly a point by itself—a trivial string) related by the first-dimensional successor,
one being the root the other the yield. These combine in the same way as the
local trees, identifying the root of one local string with the yield of another,
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to provide structures of arbitrary depth (Figure 2.) At this level, the process
of building composite structures out of local structures is ordinary concatena-
tion of strings. We adopt this terminology uniformly and refer to the process
of identifying the root of a local tree with a point in the yield of another as
concatenation of trees.

At the zero-dimensional level, we have just roots with no successors. Note
that just as the local trees are built by adding a second-dimensional root to an
arbitrary one-dimensional structure, the local strings are built by adding a first-
dimensional root to an (arbitrary) zero-dimensional structure. To generalize in
the upward direction we simply iterate this. We build local three-dimensional
trees by adding a single point (a third-dimensional root), related by single
third-dimensional successor relation to an arbitrary tree structure. Composite
three-dimensional trees are built by concatenating these three-dimensional local
trees. (Figure 3.) And so on, to arbitrary dimension. This hierarchy does not
collapse; there is no way of embedding the d-dimensional structures in the
structures of any lower dimensionality without losing some of their structural
properties. One way of showing this comes as a corollary of our characterization
of Weir’s control language hierarchy: there are sets of strings definable as the
string yield of a set of structures at dimension d that are not definable with
structures of any strictly smaller dimension.

2.1 Multi-Dimensional Tree Domains

In general, we will refer to d-dimensional trees domains as Td and the set
of all d-dimensional tree domains as T?. We formalize these structures as a



generalization of Gorn’s Tree-Domains [15, 16]. These are usually presented
as sets of sequences of natural numbers (subsets of N*) interpreted as node
addresses, with the root at address € and the children of a node at address w
at addresses w - 0, w - 1,... in left-to-right order. To be well-formed, then, a
tree domain must be downward closed wrt concatenation (all prefixes of any
sequence in the domain must also be present) and left-sibling closed in the sense
that if w - 7 occurs in the tree domain then so does w - j for all j < .

In these terms, a string domain is just an initial segment of N (a set of
natural numbers downward closed wrt <) and a node address in a tree domain
is a sequence of string addresses. In fact, the address of a node in a tree domain
can be understood to be the sequence of addresses in the string yields of local
trees of the points that one visits in following the path from the root to that
node. We follow this pattern in generalizing to higher dimensions: an address
of a node in a Td is a sequence of T(d — 1) addresses—the addresses in the
yields of the local structures of the points one visits in following the path from
the root to that node.

Thus, at dimension two and above addresses are sequences. To generalize
downward, we represent the natural numbers as unary numerals, with 0 repre-
sented as € and n represented as 1™. Hence, an address in a string domain is
a sequence of ‘1’s, an address in an ordinary (2-dimensional) tree domain is a
sequence of sequences of ‘1’s, and, in general, addresses in d-dimensional tree
domains are d"-order sequences of ‘1’s.

We begin, then, by making precise this notion of higher-order sequences.

DEFINITION 2.1 (Higher-order sequences of ‘1’s)

01 def gy
e 11 is the smallest set satisfying:
—()yenti.
—If (x1,...,m;) € "1 and y € "1, then (z1,...,2;,y) € "T11.

For example, {{(1)),{{1), (1)), ({(1,1)}) is a third-order sequence consisting of
three second order sequences consisting, respectively, of a single first-order
sequence, two first-order sequences and a single first-order sequence.

We represent the empty sequence (of any order) () as € and represent se-
quences of ‘1’s without punctuation: 111 = (1,1,1). Moreover, in order to
simplify the notation, we will often exploit the intended interpretation of se-
quences of ‘1’s as unary numerals and represent 1™ with the decimal numeral
n.

Care must be taken to not confuse sequences of differing order and, in par-
ticular, to distinguish concatenation at distinct levels. Thus {(1)-(11) = (1,11),
not (111). This is complicated, slightly, by the fact that the empty sequence
€ is common to all orders. There will be no ambiguity, however, because con-
catenation, henceforth, is defined only for sequences of the same order. So, for



instance, (11) - 1 is undefined and (11) -& = (11) not (11, &) (which is (11} - {g)).
DEFINITION 2.2 (Multi-Dimensional Tree Domains)
0-dimensional tree domains (point domains) are either empty or trivial:

1 % g (13}

(d + 1)-dimensional tree domains are sets of (d + 1)t-order sequences of ‘1’s
which are heriditarily downward closed:

T € Tdt! fi:ei

o T C 17,
o (Vs,t € H)[s-teT =s€T),
o (Vs e ) [{we 1 |s-{w) € T} € T.

The leaves of a d-dimensional tree domain are those points at addresses that
are not properly extended by any other address in the tree domain. This is
equivalent to being maximal wrt the d-dimensional successor relation. The
depth of a tree domain is the length of the longest path of d-dimensional suc-
cessors from the root to a leaf, which is to say, the length of the longest top
level sequence it includes.

For any s € T, a Td, d > 0, the child structure of s is the T(d — 1) yield of
the local Td rooted at s in T':

T,={we?1|s-(w) €T}

We will refer to {Ts | s € T'} as the set of child structures of T" and to the set
of its child structures at any dimension (the child structures plus their child
structures, etc.) as its set of component structures of the Td.

The branching factor of a Td at a given dimension 0 < i < d is one plus the
maximum depth of the component T (7 — 1) it contains. The overall branching
factor is the maximum of its branching factor at all dimensions greater than
0. In a T3, for example, the branching factor is one plus the larger of the
maximum depth of the trees it contains and the maximum length of the strings
it contains. A Td is n-branching if its branching factor is no greater than n.

2.2 Labeled Multi-Dimensional Trees

Usually, we will decorate the points in a tree domain with labels drawn from
some alphabet X.

DEFINITION 2.3 (¥-Labeled Td)

For any alphabet %, a X-labeled Td is a pair {T,7) where T is a Td and
7:T — ¥ is an assignment of labels in ¥ to the nodes in 7.

We will denote the set of all $-labeled Td as T&. We will denote the set of all
Y-labeled, n-branching, Td as Tg’d.



2.3 wSnTd

Our goal is to define languages as the string yields of those sets of ¥-labeled
Td that satisfy logical formulae defining their structural properties. For these
purposes we model the n-branching Td as “initial segments” of TZ the relational
structure with 7%, the complete n-branching Td (i.e., the infinite Td in which
every point has a child structure that has depth n — 1 in all its dimensions) as
the domain, along with relations for each of the d successor functions:

def
T EUTI, )1<i<a

where 2 <; y iff = is the immediate predecessor of y in the i**-dimension.

The weak monadic second-order language of T¢ includes constants for each
of the relations (we let them stand for themselves), the usual logical con-
nectives, quantifiers and grouping symbols, and two countably infinite sets
of variables, one ranging over individuals (for which we employ lowercase)
and one ranging over finite subsets (for which we employ uppercase). If
(Tl Tn, X1,--.,Xm) is a formula of this language with free variables
among the z; and X, then we will assert that it is satisfied in T2 by an
assignment s (mapping the ‘@;’s to individuals and ‘X’s to finite subsets) with
the notation

To E e ls]

DEFINITION 2.4 (wSn'Td)
The weak monadic second-order theory of T%, denoted wSnTd, is the set of all
sentences of this language that are satisfied by T4.

LEMMA 2.5
wS1T1 is equivalent to wS1S in the sense of interinterpretability, as is wS1Td
for all d. wSn'T2 is interinterpretable with wSnS for all 2 < n < w.

2.4 Definability in wSnTd

A set T of ¥-labeled Td is definable in wSnTd iff there is a formula . (X7, X )sesx,
with free variables among X7 (interpreted as the domain) and X, for each
o € Y. (interpreted as the set of o-labeled points in T'), such that

(T, eT <= T E o [Xr - T,X, = {p| 7(p) = o}].
THEOREM 2.6

A set of strings over ¥ is definable in wS1T1 iff it is definable in wS1S. A set
of ¥-labeled trees is definable in wSn'T2 iff it is definable in wSnS.



2.5 Local and Recognizable Sets

The great strength of this hierarchy of structures is the uniformity of its defini-
tion. This allows easy generalization of known mechanisms and results at one
dimension to structures of any dimension. For instance, we can define notions
of grammars and automata over objects of arbitrary dimension by generaliz-
ing the familiar mechanisms over the first- and second-dimensional structures:
finite-state automata over strings (and, subsequently, trees) and context-free
grammars (over strings, but generating trees). We interpret these declaratively,
as licensing sets of labeled structures. From this perspective, the automata turn
out to be an extension of the grammars.

DEFINITION 2.7 (Td Grammar)
A Td grammar over an alphabet X is a finite set of X-labeled local Td.

As the trees in the grammar are local, they consist of a labeled root along with
a yield: a labeled T(d — 1). We can interpret this as a production by taking it
to license the rewriting of the symbol labeling the root as the structure of the
yield. At this point, though, we will restrict our attention to the derivation
structures—the labeled Td recording a derivation employing productions of
this sort—rather than the labeled T(d —1) such a derivation might yield. From
this perspective the productions simply license local fragments of the derivation
structures: a labeled Td is licensed by a Td grammar iff it is constructed from
the local Td of the grammar.

When we wish to emphasize the interpretation of the local trees as produc-
tions, we will represent them as pairs in ¥ X T%_l, where the left member of
the pair is the label of the root of the local tree and the right member is its
yield structure.

DEFINITION 2.8 (Local Set)
The set of labeled Td licensed by a grammar G C T, relative to a set of initial
symbols Ly C X (denoted G(Xg)) is the set of all X-labeled Td with root labeled
with a symbol in ¥ in which every local Td is included in G.

A set of Y-labeled Td is a local set iff it is G(Xg) for some Td grammar G
over Y. and some ¥y C X.

(More complete definitions the local and recognizable sets can be found in [34,
36, 37].)

The T2 grammars are a mild generalization of ordinary Context-Free Gram-
mars: we allow multiple start symbols and do not distinguish terminals and
non-terminals in the standard way—any symbol may label the root of a local
tree in the grammar and may, therefore, be expanded. It is possible, however,
to distinguish a set of terminal symbols. Every local tree in the licensed tree
must occur in the grammar. This includes the trivial local trees (trees with
empty yields) occurring at the leaves of the tree. Hence every leaf must be



explicitly licensed by a trivial local tree in the grammar and the set of symbols
decorating these trivial local trees are the symbols licensed to be terminals.
From this perspective, the generalization simply allows terminals optionally to
be expanded. These generalizations do not, of course, affect the string lan-
guages the local sets of trees yield, which are just CFLs.

The local sets of strings are the strict 2-locally testable languages, a weak
subclass of the regular languages.

The Td automata are extensions of the grammars in which the structural
licensing is based not (only) on the explicit labels of the nodes but (also) on a
finite set of states.

DEFINITION 2.9 (Td Automaton)
A Td automaton over an alphabet ¥ and a finite set of states () is a finite set
of pairs from the product of ¥ and the set of @)-labeled local Td.

We can interpret an automaton as a grammar over () (the second components
of the pairs) along with a mapping from the local trees in that grammar to
symbols in 3. The X-labeled Td licensed by such an automaton are images
of the @-labeled Td licensed by the grammar in which the label of the root of
each local Td has been replaced with a symbol in X associated with that local
Td in the automaton.

DEFINITION 2.10 (Recognizable Set)
A Y-labeled Td, T = (T, 7}, is licensed by a Td automaton A C X X 'H‘é relative
to a set of initial states Qo C @ iff there is a Q-labeled Td, 7' = (T, 7') in
which the root is labeled with a symbol in Q¢ and in which every local Td is
included as the right component of a pair in A and where, for each w € T,
7(w) = o only if there is a pair in A associating o with the local Td rooted at
w in T'. The set of X-labeled Td licensed in this way is denoted A(Qo).

A set of X-labeled Td is a recognizable set iff it is A(Qo) for some Td au-
tomaton over ¥ and () and some @)y C Q.

The Q-labeled tree, T, is referred to as a run of the automaton. The automata
can be thought of as building parallel structures simultaneously, with the struc-
tural configuration determined in the run and the external form determined in
its ¥-labeled image.

The one-dimensional automata are the ordinary non-deterministic finite-
state string automata, hence the recognizable sets of strings are just the regular
sets of strings. The two-dimensional automata are standard non-deterministic
finite-state tree-automata [14].

2.6 Definability and Recognizability

The recognizable sets at each dimension are characterized by concatenation of
local structures—in this sense they are all reqular—and, as a consequence, they



all exhibit similar properties. The uniformity of their definition makes it easy to
generalize proofs of a property of recognizable sets at some specific dimension
to proofs of that property at arbitrary dimensions—in essence, the dimension
becomes a parameter of the proof, determining the type of structures manip-
ulated by the constructions but playing no essential role in the constructions
themselves.

A simple example is the relationship between the local and recognizable sets
due originally, for strings, to Chomsky and Shiitzenberger [5] and, for trees, to
Thatcher [43].

THEOREM 2.11
A set of X-labeled Td is recognizable iff it is a projection of a local set.

Here a projection is an arbitrary mapping (typically many-to-one) from one al-
phabet to another. For the forward direction, one constructs, from an arbitrary
automaton over ¥ and @), a corresponding grammar over ¥ x () which licenses
sets of Td in which the @-labeled Td obtained via the right projection is a run
of the automaton licensing the ¥-labeled Td obtained via the left projection.
For the other direction one constructs an automaton with the original ¥ as the
set of states and the image of ¥ under the projection as the label alphabet:
given an arbitrary grammar G over ¥ and projection 7 : ¥ — ¥/, for each local
tree T € G, the automaton includes the pair (7 (o), T), where o is the label of
the root of 7.

Similar uniform proofs can be obtained for closure of the class of recog-
nizable sets at each dimension under projection, cylindrification and Boolean
operations, for closure under determinization (in a “bottom-up” sense), and for
decidability of emptiness. (Additional examples can be found in [32, 34, 37].)
Together, these properties allow us to lift the descriptive characterizations of
Biichi, Elgot, Doner, and Thatcher and Wright to descriptive characterizations
of the class of recognizable sets of arbitrary dimension.

THEOREM 2.12
A set of finite ¥-labeled Td is recognizable iff it is definable in wSn'Td for some
n<w.

This gives us our initial descriptive characterizations of language-theoretic
complexity classes. The recognizable sets of strings are just the regular (string)
languages. Hence, definability in wSn'T1 characterizes the regular languages.
Similarly, the string yields of the recognizable sets of trees are the context-
free (string) languages. (This is a consequence of Theorem 2.11.) Hence,
definability (as yields) in wSnT2 characterizes the context-free languages.

COROLLARY 2.13 (Biichi’60, Elgot’61)
A set of (finite) strings is regular iff it is definable in wSnT1.



COROLLARY 2.14 (Doner’70, Thatcher and Wright’68)
A set of strings is context-free iff it is the yield of a set of finite trees definable
in wSn'T2.

3 wSnT2, n <w—GB

The first linguistic theory we will look at is Government and Binding Theory [6,
7]. Until the emergence of Minimalist Grammars [8] this was the dominant
theory in the Principles and Parameters tradition. It consists of a loose and
dynamically changing collection of universal principles constraining the form
of phrase markers. These principles are tailored to particular languages by the
settings of a small set of discrete-valued parameters. Hence it is very much a
constraint-based theory—the range of licensed analyses is determined by the
conjunction of structural properties, not by mechanisms for deriving them. As
such, the complexities either of individual principles or of the overall theories
are quite difficult to establish [2] and computational methods based on GB
theories are, for the most part, speculative [12, 18].

It turns out that most, but not all, aspects of standard GB theories of syntax
can be captured within wSnT2, and the distinction between what can and
cannot be defined provides a characterization, in GB terms, of what it means
to be Context-free. We can only provide a glimpse of these results here. For
details see [33].

3.1 Definability

Typically, GB principles are stated in terms of features—finitely valued at-
tributes of the constituents of an utterance—and a small suite of basic struc-
tural relationships between those constituents. Our general approach is to
define each feature and relationship separately—effectively adding them to the
signature of our language. We can then employ them freely in defining the
properties based on them.

We can model features with a distinct monadic predicate for each possible
feature value. This will be satisfied at a node iff the sub-tree rooted at that
node represents a constituent bearing that feature with that value. As we can
treat these additional monadic predicates simply as existentially bound second-
order variables we can add any finite number of them without extending the
expressive power of our language.

For the structural relationships we must be more careful. As these are typi-
cally non-monadic we cannot simply extend our signature to include predicates
for them. As we shall see, adjoining even a single uninterpreted dyadic predi-
cate to the signature of wSn'T2 properly extends its descriptive power. Rather,
any non-monadic predicates we add must be explicitly defined: it must be



possible to eliminate all occurrences of the predicates via a process of syntac-
tic substitution by their definitions. For the most part, what this means is
that, while non-monadic predicates can (and will) be defined in terms of other
non-monadic predicates in addition to the predicates of the signature and any
defined monadic predicates, there must be no circularity in their collective
definition. It should be emphasized that the restriction to explicitly defined
predicates does mot extend to monadic predicates. Since monadic first-order
implicit and inductive definitions can be captured as explicit monadic second-
order definitions we have considerable freedom in defining monadic predicates.

Definitions within GB theories, while tending to be somewhat loose in for-
malization, follow, for the most part, an axiomatic style. Hence the process of
translating into wSn'T2 is actually reasonably straightforward. As an example,
consider the fundamental GB relationships of C-Command and Government.
There are a variety of minor variations on the way these are defined, but a
common definition of C-Command has a category C-Commanding another iff
neither category dominates the other and every branching category that domi-
nates the first dominates the second. Government (in a highly-simplified form)
can then defined in terms of C-Command: a category Governs another iff it
C-Commands it and no Barrier intervenes.

(Fy,2)[r < yANx <2 2 Ay 2]

<y YAy <Gz A

(V2)[(2 <5 = A Branching(z)) — z <3 ¥]
Governs(z,y) = C-Commands(z,y) A

—(32)[Barrier(z) A z <§ y A -z <3 2]

Branching(z)

C-Command(z,y)

Here < and <} are the transitive and (respectively) reflexive transitive clo-
sures of <. These are explicitly monadic second-order definable via the defi-
nition of a Branch—a set of nodes upwards closed wrt and linearly ordered by
dg:

Branch(X) = (Vz,y)[(X(z) Ay <2 ) = X(y)]A
—if ¢ € X has a parent y then y is also in X
Ve, y, )[(X(@)AXWYWAXZ) Az QyAT < z) 5y~ Z2
—if £ € X then z has at most one child in X.

Then two nodes are related by <3 iff every Branch containing the second also
contains the first:

z<yy = (VX)(Branch(X)A X(y)) = X(z)
—z dominates y iff every Branch including y
N includes z as well.
TGy = xByAzdy
—zx properly dominates y iff it dominates but is
not equal to y.
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Equality (=) and symmetric domination are equivalent.

Branching is then explicitly defined in these terms and C-Command is ex-
plicitly defined in terms of Branching. Governs is then defined in terms of
C-Command and the monadic predicate Barriers, typically defined in terms of
specific features, which we assume is defined elsewhere.

3.2  Non-definability

In many respects, the question of what aspects of GB can be defined within
wSn'Td is not as interesting as the question of what aspects cannot be defined.
This boundary can be delimited by exploring the theory of chains—the medi-
ator of movement in GB—and, in particular, the mechanism of free-indezation
which is generally employed to identify the members of a chain.

A typical GB analysis of movement is illustrated in Figure 4. The Who has
raised from its base position as the embedded subject (the specifier position
of the embedded IP) to a target position at the front of the sentence (in the
specifier position of the CP) passing through the specifier position of the em-
bedded CP on the way. These three positions form a chain: a moved element
along with a sequence of traces marking the positions it has moved from. This
particular chain is referred to as an A-chain as it involves movement into a
non-argument (A) position. A second chain marks the movement of the ele-
ment carrying inflection (do) from the head of the IP to adjoin! at the (empty)

1 There are three senses of the term adjoin that we will encounter. Here we refer to what is sometimes
called Chomsky Adjunction in which a node (I here) is adjoined to another (C) by doubling the second
and attaching the first as the sibling of the lower copy. A second sense will be encountered in Section 5:



head of the CP. Constraints on movement are represented as constraints on
the form of these chains.

The difficulty in capturing these accounts in wSn'Td is the mechanism gener-
ally employed to identify the members of the chain—free indexation—in which
it is assumed that indices are assigned to elements of the tree randomly with
constraints on chains and similar co-indexed structures filtering out the ill-
formed assignments. The problem with free-indexation is that the indices, in
essence, form an equivalence relation with unbounded index. Such a relation-
ship is not definable in wSn'Td which we can show by reduction from Lewis’s
monadic second-order theory of the grid [24].

The theory of the grid is the theory of the discrete first quadrant of the Carte-
sian plane with functions for immediate right- and above-successors. Lewis
established undecidability of the MSO theory of the grid by reduction from the
halting problem, capturing configurations of Turing Machines as horizontal se-
quences of labels and computations as the vertical evolution of these sequences.
The theory of the grid is, in essence, the theory of the two branching tree mod-
ified by the property that the successors commute: the element above the right
successor of a point is identical to that to the right of the element above it. If
one adjoins an arbitrary equivalence relation to the signature of wS2T2 (indeed,
as the property of being an equivalence relation is definable, any uninterpreted
binary relation will do) the effect of the commutativity can be defined. Hence,
the theory of the augmented structure is undecidable. If the adjoined rela-
tion were definable, it could be eliminated and, consequently, the theory of the
augmented structure would be decidable by virtue of the decidability of the
original theory. Thus, the adjoined relation is a strict extension—it cannot be
defined within the original structure.

Evidently, then, if one is to capture a GB account of syntax one must do
so without the use of indices (or, at least, without an unbounded supply of
indices). Remarkably, more recent GB theories have tended to minimize and
even eliminate the use of indices in favor of constraints on local relationships
such as antecedent-government [28, 25]. One such theory is Rizzi’s Relativized
Minimality [28] which requires the antecedent-governor of a trace to be in the
closest potential position for an antecedent-governor of the requisite type. This

the tree adjoining operation of TAGs. Finally, we also use adjoin in the standard model-theoretic sense of
extending the signature of a class of models.



type or relationship is easy to capture in wSn'Td:

Abar-Antecedent-Governs(zx, y) =
—A-pos(z) A C-Commands(z,y) A F.Eq(z,y)A
— is a potential antecedent in an A-position
—(3z)[Intervening-Barrier(z, z, y)]A
—no barrier intervenes
—(3z)[Spec(z) A ~A-pos(z)A
C-Commands(z, z) A Intervenes(z, z,y)]
—minimality is respected

Such relations can be extended with constraints on the co-occurrence of
features, etc., to define Link relations—relations which must hold between
adjacent elements of a chain—for each type of chain admitted by the theory. As
these link relations are mutually exclusive, they can be combined into a single
disjunctive relation Link(z,y) which must hold between adjacent elements of
chains of any type. Chains, then, can be defined as, in effect, discrete linear
orders (with end-points) wrt the Link relation:

Chain(X) = (I)[X(x) A Target(z)] A (3lz)[X (z) A Base(z)]A
—X contains exactly one Target and one Base
(Vz)[X (x) A “Target(z) — (Aly)[X (v) A Link(y, z)]] A
—AIl non-Target have a unique successor in X
(Vz)[X (z) A =Base(z) — (J'y)[X (y) A Link(z,y)]] A
—AIll non-Base have a unique antecedent in X
(Vz,y)[X (z) A (Link(z,y) V Link(y, z)) — X(y)]
—X is closed wrt the Link relation

The last constraint, requiring chains to be closed wrt the Link relation, when
combined with the requirement that the ordering of the Link relation be linear,
rules out the possibility of a single point participating in multiple chains.? In
particular, this rules out structures in which a single element has moved from
more than one base position, as in Figure 5. This requires, however, that
we can always distinguish chains when they overlap and this proves to be the
characteristic limitation of the approach.

3.8 Context-Freeness in GB Theories

By the characterization of Corollary 2.14, the string yields of the sets of phrase
markers we can define in this way are all context-free languages. As it is

2There are GB accounts in which two chains of different types are joined by a common endpoint, but
together they represent two phases of movement of a single element. We interpret these as a single chain
with restrictions on the configurations in which the joining can occur falling out of the compatibility of the
various link relations.
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clear that there are human languages that are non-context-free [41, 17], the
account must fail for some structures. A familiar example is the more-or-
less standard account of head-raising in Dutch (Figure 6). As it turns out,
these structures necessarily involve the potential overlap of unboundedly many
chains. Consequently, a finite set of labels or features cannot serve to always
distinguish those chains that overlap—no matter how we attempt to capture
this account within wSn'T2, there will always either be well-formed structures
that we cannot license or ill-formed structures we do license.

In this way, the ability to fix a priori finite bounds on the number of over-
lapping chains serves as a diagnostic for context-freeness in GB terms:

e A language is “English-like” iff the number of chains which overlap at
any single position in the tree is bounded by a constant.

o Standard GB accounts of English-like languages license strongly context-
free languages.

4 Yields of Higher-Dimensional Trees

So far our mechanisms define only sets of labeled Td. Ultimately, we are inter-
ested in the string languages theses sets yield. For trees this is straightforward:
the string yield is the set of nodes that are maximal wrt immediate domination
(<2), ordered by immediate left-of (<;) extended in such a way that it respects
the ordering of the interior nodes of the tree. (That is, if  <; y then all nodes
dominated by z precede every node dominated by y.) For higher dimensional
structures we will follow this same pattern, with the yield being the set of max-
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imal points wrt the successor in the major dimension, ordered by extensions
of the successor relations in the minor dimensions. The yield of a Td will be a
T(d — 1) with the string yield obtained by taking yields d — 1 times.

There are two phases, then, to taking the yield. The first extends the or-
derings in the minor dimensions throughout the structure; the second restricts
the resulting structure to maximal points. The crux of the process is the first
phase; it, in essence, determines the way in which the yields of the child struc-
tures splice together. The difficulty is that, for dimensions higher than two,
this is ambiguous. In Figure 7, for example, it is clear that B must dominate
H in the yield. The question is which of I or J dominate F' and G. Each choice



F1G. 7. Ambiguity in the yield of higher-dimensional structures.

reflects a different way of splicing the yields together.

We resolve this by building an explicit splicing into the structures. In each
component local Ti we distinguish a point in the yield, the i*"-dimensional
head of that structure. In the yield of a each local Td, then, there is a sequence
of (d — 1)-dimensional heads extending from the root of the yield (a non-head)
to a leaf. We refer to this sequence as the primary spine of the yield and refer
to the leaf it includes as its foot. This foot designates the splicing point. In the
figure, the 2"9-dimensional heads are indicated with underlines. Thus I is the
foot of the {H,I,J} tree and it (but not J) dominates F' and G in the yield.
(Hence, the two-dimensional primary spine of the yield of the full structure is
(B,H,I,G).) In extending domination through the original structure, then, a
node will inherit, from its ancestors in a dimension ¢, ancestor relationships in
dimension 4 — 1 (so D <3 J and B <3 D implies B < J) but will only inherit
descendant relationships if it (and all nodes on the path from the ancestor to
the node) falls on the (i — 1)%*-dimensional primary spines of their component
structures. (Thus, D <f I and D <F F implies I < F but D <} Jand D <f F
does not imply J < F.)

There are a number of technical details involving the distribution of heads,
the way domination at dimensions lower than ¢ — 1 is extended and the way in
which heads are determined in the result (for details see [37]) but, in the end,
we get a class of structures in which the yield function corresponds, roughly,
to restriction to maximal points:



DEFINITION 4.1
A Y-Labeled Headed Td is a structure:

T= <T7 q?‘, R;, H;, Po)lgigd,oeza

where T is a Td, <; is the extended <«;, R; picks out the roots of the local Ti
contained in T', H; picks out the i-dimensional heads, and P, picks out the
points labeled o.

DEFINITION 4.2 (Yield)
The i**-dimensional yield, for each 1 < i < d, of a X-labeled headed Td

_ + .
T =(T, <, Ri, Hi, Ps)1<i<d,cex 8

. i def . i Tri
Yieldy(T) € (T%, <} |1, R, H, Py |pidi<j<ivoes
where T is the set of points in T’ that are maximal wrt < for all i < j < d
and the R} and H} are “images” (in a particular sense, see [37]) of R; and H;
in T%.

The string language licensed by a Td grammar or automaton, then, is Yieldi(']l‘),
where T is the set of 3-labeled Td it licenses.

5 wSnTd, n < w—Tree-Adjoining Grammar

As noted above, the T2 grammars are equivalent to CFGs (with some mild
generalizations) and the T2 automata are just finite-state tree automata. In
general, the process of concatenating local d-dimensional structures that is the
underlying mechanism of the grammars and automata can be viewed, from the
perspective of the (d—1)-dimensional yields, as a process of replacing a point—
the root of the local Td—with a T(d — 1)—the yield of the local Td. Thus,
the concatenation of local trees corresponds to the substitution of strings for
symbols—the string rewriting that is characteristic of Context-Free Grammars.
At the three-dimensional level, we have a corresponding process of substituting
trees for nodes in trees, a particular form of context-free tree-rewriting. This
process is the characteristic operation of Tree-Adjoining Grammars.

5.1 Tree-Adjoining Grammars

Briefly, a TAG consists of a set of elementary trees of two sorts: initial trees
(a1 in Figure 8) represent the minimal well-formed structures of the language,
auziliary trees (01 - .. B3 in the figure) represent the recursive structures—those
expanding a constituent of a given category into a constituent of the same
category. Fach auxiliary tree, then, must have a node in its yield labeled with
the same non-terminal as the root. This node is designated the foot of the tree.
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Derivation, in TAG, proceeds by a process of adjunction (see Figure 9) in
which a node in one tree (the node at address 7 in the tree 7 of the figure) is
replaced by an auxiliary tree (3 in the figure) by cutting out the subtree rooted
at that node, attaching the auxiliary tree in its stead, and then attaching the
excised subtree at the foot of the auxiliary tree. There is a clear parallel, here,
to context-free rewriting in strings. It differs from the general context-free
tree rewriting of Rounds ([38]) in that all children of the rewritten node are
attached as the children a single node of the auxiliary tree with their order and
multiplicity preserved.

In a pure TAG adjunction is controlled by the explicit labels of the nodes.
An auxiliary tree may adjoin at a given node iff its root and foot bear the same
label as that node. In practice, this is too weak and TAGs are augmented with



adjoining constraints associated with the nodes. These come three varieties:
selective adjoining (SA) constraints designate the set of auxiliary trees which
may adjoin at the node, null adjoining (NA) constraints forbid adjunction
at the node (these are subsumed by empty SA constraints) and obligatory
adjoining (OA) constraints require adjunction at the node. In the figure the
SA constraints simply reflect the labeling constraints (although we might take
the nodes with no SA constraint specified to have empty SA, and hence NA,
constraints). The OA constraint on the VP node of a; reflects the fact that
the gerundial form of bark requires an auxiliary (such as was) to be adjoined.

Given the mechanism of SA constraints, the restrictions on the labels of the
trees is inessential. In fact, they are stipulations that reflect aspects of the
linguistic content of standard TAG grammars (see [32]). We will generalize
TAGs by relaxing these stipulations.

DEFINITION 5.1
We will say that a TAG is non-strict if it permits the root and foot of auxiliary
trees to differ in their label and to differ from the label of the nodes to which
they may adjoin.

Here we do not interpret the notion of label at all. All restrictions on adjunction
must be expressed by explicit associations of some sort between the labels of
nodes and the auxiliary trees which may adjoin at that node. Unless stated
otherwise, we will assume these are stated as SA and OA constraints. Moreover,
as we have done with the Td grammars, we do not strictly partition labels
into terminals and non-terminals. Consequently, there is no reason to strictly
partition the elementary trees either. We will take all trees to have a designated
foot node, will permit any tree to adjoin wherever SA constraints permit and
will simply identify the initial trees as a designated subset of the elementary
trees.

Putting all this together, we will take a non-strict TAG to be simply a a
pair (E,I) where E is a finite set of elementary trees in which each node is
associated with:

¢ 3 label—drawn from some alphabet,

e an SA constraint—an arbitrary subset of the set of names of the elementary
trees, and

e an OA constraint—Boolean valued
and I C FE is a distinguished non-empty subset, the initial trees. As every

elementary tree named in an SA constraint is required to have a designated
foot node, we will assume that each elementary tree has such a node.
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5.2 Derivation Trees

A TAG derivation tree is a record of the adjunctions made in the course of
a derivation. Its root is labeled with the name of an initial tree; all other
nodes are labeled with a pair consisting of the name of an auxiliary tree and an
address in the tree named in the parent of the node. In Figure 10, for instance,
using the trees of Figure 8 and taking the derivation bottom-up: B2 adjoins
into 8 at address (0) (or {g)), the resulting derived auxiliary tree adjoins into
oy at the root, and 83 adjoins into a; at address (1).

As Weir ([46]) has pointed out, these derivation trees are context-free. In
the our case, in which the TAG is non-strict, a node {3, w) may be a child of
another node (y,v) iff the SA constraint associated with w in vy admits 3; and
if the address w in vy is associated with an OA constraint then any node labeled
{y,v) is required to have a child labeled (3, w) for some S.

The derived tree is obtained from the derivation tree by a yield operation
which simultaneously applies the specified adjunctions. The tree set generated
by a TAG @G, denoted T'(G), is the (tree) yield of the derivation trees it licenses.
The string language of G, denoted L(G), is the string yield of that tree set.

5.8  Equivalence of T3-Automata and Non-Strict TAGs

Equivalence of T3-automata and non-strict TAGs can be established by straight-
forward constructions—in essence, SA constraints and states have roughly
equivalent power. Fuller details of these constructions can be found in [34,
35, 36, 37].

THEOREM 5.2
A set of X-labeled trees is the yield of a recognizable set of ¥-labeled T3 iff it
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is generated by a non-strict TAG with adjoining constraints.

A T3 automaton can be constructed from a non-strict TAG by taking the
set of states to be (roughly) the powerset of the set of elementary trees and
building a set of local T3 for each elementary tree with the tree as the yield and
the roots labeled with each state including the tree. For the other direction,
we, in essence, convert each local T3 of the automaton into an elementary tree
with the SA constraint associated with a node being the set of elementary trees
formed from the yield of a T3 with root labeled with the same state as the node.

It is important to recognize just how direct these constructions are. In a very
strong sense the T3 automaton and the TAG are just alternate presentations of
the same object, with the local relationships of the automaton being expressed
in the SA constraints of the TAG. In essence, states and SA constraints are
equivalent mechanisms; for all intents and purposes T3 automata and non-strict
TAGs with adjoining constraints are just notational variants.

COROLLARY 5.3

A set of ¥-labeled trees is generated by a non-strict TAG with adjoining con-
straints iff it is the yield of a wMSO definable set of finite X-labeled headed
T3.

Thus, we can employ the wMSO language of ¥-labeled headed T3 as a declar-
ative mechanism for defining TAGs, stating the syntactic constraints directly
in logical terms and employing the constructions of the proofs of theorems 2.12
and 5.2 to compile them into TAGs. It should be noted that there is a sig-
nificant practical problem with this approach in that the wMSO language is
extremely expressive—it is possible to define infeasibly large TAGs with very
small wMSO formulae. This is the same problem that exists in the application
of the one- and two-dimensional characterizations in model-checking. Here, as
in that application, the problem is one of avoiding infeasible definitions. Our
belief, based in part on the experience of the model-checking application, is
that, in many cases, this will be possible.



5.4 Applications

In linguistic applications SA constraints are usually encoded in the form of
feature structures, a hierarchically structured generalization of the simple no-
tion of feature employed in GB, in which the value of a feature may either
be atomic or may be another feature structure. In addition, equivalence of
the sub-structures rooted at certain points within the feature structures may
be asserted with re-entrancy tags—essentially co-indexing those points. These
can be seen in the trees forming the yields of the local T3 in Figure 11 (derived
from the XTAG English grammar [49]) as ‘(1)’, etc. In general, feature struc-
tures may be recursive and satisfiability of a set of constraints on their form is
not decidable.

In TAG usage, however, the feature-structures are required to form a finite
set. Under these circumstances, we can capture them simply by taking each of
the finitely many sequences of features that form paths through the admissible
set of structures to be a monadic predicate, in essence labeling each point with
the set of paths in the feature structure(s) assigned to it in the TAG. This also
gives us a straightforward encoding of re-entrancy tags via path equations. If
we let Feat denote the set of all paths occurring in the feature structures of the
TAG then, for any w,v € Feat, we can assert equality of the value of w in the
feature structure labeling a point z and the value of v in that labeling y with
(letting ‘:’ denote concatenation of feature sequences):

ww=o)(z,y)= N [w:a)@) e ©0:u))

w:uEFeat
or v:u€Feat

(Additional details can be found in [35].)

In feature structure based TAGs, in order to accommodate adjunction each
node is associated with two feature structures, a top and a bottom feature
structure. In the case that an auxiliary tree is adjoined at a node, the top
feature structure of the node unifies with the top feature structure of the root
of auxiliary tree and the bottom feature structure unifies with the bottom
feature structure of its foot. If, on the other hand, no tree is adjoined at a node
then the top and bottom feature structure of the node must unify with each
other.

To see how this plays out linguistically, consider the elementary trees rep-
resented in the yields of Figure 11. The yield of «a; is the initial tree for a
gerundial form verb like barking. The yield of 3; is an auxiliary tree for a aux-
iliary verb such as was. The obligatory adjunction of an auxiliary at the VP,
in this account, is a consequence of the requirement that the subject NP must
be marked with case. The verb, however, does not assign case and if the top
and bottom feature structures of the initial tree are unified this requirement
will be violated (via the re-entrancy tags (1) and (3)). If the auxiliary tree is



adjoined at the VP, however, its sequence of assign-case features will intercept
the connection between the subject and the main verb and the subject will
receive nominative case from the auxiliary verb. Note that further adjunctions
at the root of the auxiliary tree will intercept this sequence again. The result is
that the subject receives case from the auxiliary that is most deeply embedded
in the derivation, which will be the first in the sequence of auxiliaries in the
string yield.

We can, in fact, adopt this account intact in a fully declarative logical def-
inition as represented in the T3 of the figure, with feature structures now
interpreted as sets of labels. In doing so, however, it becomes clear that many
of the features involved are motivated by the derivational mechanism rather
than by linguistic necessity. It seems highly unlikely, for instance, that the
grammar writers seriously intend assign-case to be a linguistically significant
feature of ‘S’s. Within the logical language, we can state relationships like that
of the subject NP to the most deeply embedded auxiliary directly. The account
of case-marking can become a component of the definition of a; by adding a
constraint such as:

(Fz, y)[vp <5 xAMaxs(z)Ax 32 yA{assign-case)(y)A(assign-case = case)(y, npo)].

which says that the case feature of npy must agree with the assign-case fea-
ture of that child (in the second dimension—-<, is the transitive closure of <
restricted to local structures) that bears assign-case of a maximal descendent
(in the third dimension) of vp (where that maximal descendent could possibly
be vp itself).

This is only a first step, however. The identification of the case-marking verb
in terms of its depth of embedding in the third dimension is still an artifact of
the adjunction mechanism. We are not limited, however, to expressing our def-
initions in these terms. We might, for instance, define a notion of Government
based on the structural relationships in a composite T3, something like:

Governs(z,y) = (32)[z <3 A 2z <3 yA
(V2")[(2 <§ 2' A2 <% z) — —Initial(2')]].

which states that a node governs every child of each node properly above it,
up to the first Initial node. This has each node governing all nodes in its own
local T3 as well as all nodes in any T3 it adjoins into (i.e., is concatenated to)
and all nodes governed by those it governs.?

We can then state the theory of case marking in linguistically more natural
terms: case is assigned by the mazimal governing case assigner, i.e., that which

3This account is not meant to be taken as a serious proposal. It is just one way of capturing the XTAG
account in more familiar terms.



is not itself governed by any other case assigner.

(Vz,y)[((assign-case)(z) A Governs(z,y) A {case)(y)A
—(3z)[(assign-case)(z) A Governs(z, z)]) —
(assign-case = case)(z,y)].

Note that there is no need of distinct top and bottom feature structures and
no need of sequences of re-entrancy tags passing features around the trees. Asin
the GB account, we develop a language of linguistically significant structural
relations and then define our theory of syntax in those terms. It should be
noted, though, that the intermediate features do not simply disappear. Rather,
they are reinstantiated as states and eventually adjoining constraints during the
process of translating the logical definition into automata and TAGs. In this
way the logical language behaves exactly like a higher-level language. It lets us
define the set of structures in terms that are independently meaningful hiding
the details of the mechanism for recognizing them.

6 Unbounded Branching

The branching factor of the local and recognizable sets is bounded by virtue
of the finiteness of the grammars and automata. This is inconvenient for some
accounts of syntax, particularly “flat” accounts of the syntax of coordination
in which an arbitrarily large collection of constituents of similar category are
combined into a single constituent of the common category. The branching
factor of the wMSOQO definable sets, on the other hand, is bounded only by the
branching factor (n) of the underlying class of models. Thus, there is nothing
forcing us to adopt a fixed finite bound on the branching. If we take our
underlying model to be T? (the w-branching Td) that is, if we work in wSwTd,
we can define sets of finite structures in which, while the branching factor of
each individual Td is finitely bounded, there is no finite bound on the branching
in the set as a whole.*

There are two questions raised by this idea. First, since the automata can
no longer recognize the sets directly it is not immediately clear that wSwTd is
decidable. Moreover, there is a question of how complicated these sets might
be. In particular, since the set of yields of the local Td occurring the Td in the
set is now potentially infinite, it is not clear what limit there may be on the
complexity of the languages these definable sets may yield.

In the two-dimensional case decidability of the theory of the w-branching
structure (even of the full MSO theory) was established by Rabin [27] and we
can both generalize his crucial lemma to arbitrary dimensions and use it as a
means of establishing bounds on the complexity of the languages of the yields
of the local Td and hence the yield languages.

4Note that this involves no change to the logical language, only to its interpretation.



Fic. 12. Embedding T2 in T2.

LEMMA 6.1 (from Rabin)
There is an effective translation ¢ — ¢’ such that, for all n < w, ¢ € wSn'Td
iff ¢' € wS2Td.

The idea of the translation is just that of the more-or-less standard conversion
of an arbitrarily branching tree into a binary branching tree: each local tree
maps to a right branching binary tree in which the children of the local tree
are the leaves (left children) and the spine (the right children) are new nodes.
(See Figure 12.) To find the image of the i*" child of a node one follows i
right successors from the image of that node and then a single left successor.
Rabin’s observation is that this embedding preserves domination and linear
precedence and that the images of the nodes of the original tree form a MSO
definable subset of the binary tree. Thus, given an arbitrary ¢ in the language
of wSnT2, for any n including w, we can relativize it to the image of T2 in T3
to obtain the ¢’ of the lemma. It follows immediately that wSwT2 is decidable.
The generalization is somewhat messier, but reasonably straightforward (de-
tails are in [36]). Figure 13 illustrates the mapping of a single local T3. In the
two-dimensional case the image of the n-branching tree was the set of roots of
the string yields of the local trees in the two-branching tree. Here, the image
is the set of roots of the T2 yields of the local T3 of the two-branching struc-
ture. (The dashed lines indicate the successor relationships of the original T3.)
In general, the image is the set of roots of the ((d — 1)-dimensional) yields of
the local Td. Again the image of the arbitrarily branching structure forms a
definable subset of the two branching structure in which domination (in each
dimension) is preserved. Thus we get decidability at all dimensions.



Fic. 13. Embedding T2 in T3.

THEOREM 6.2
wSwTd is decidable for all d < w.

Moreover, since the mapping preserves domination and none of the non-image
points in the two-branching structure are maximal, the string yields of the two
structures will be identical. This gives a generalization of Chomsky Normal
Form.

LEMMA 6.3 (Two-Branching Normal Form)
A set L C $* is Yield}(T) for T, a set of X-labeled headed Td, iff it is Yield}(T")
for T', a set of X-labeled headed 2-branching Td.

So, just as in the two-dimensional case, the extension to arbitrary finite
branching does not extend the class of string languages the sets of definable
structures yield. It remains to determine the extent to which it extends the
classes of definable structures themselves. In particular, we are interested in
the complexity of the sets of structures which form the yields of the local
structures expanding a given label. Here we can show that it is possible to
extract, for each label, a T(d — 1) automaton from the embedded structures



(B,A—Ay)
(C, Ag— Ay )
(D, AT=Ay )
(E,As— )

<B’A0/A\A1><01A?0\A3><D1A?1\A5

F1G. 14. Recognizability of T(d — 1) yields of recognizable sets of Td.

that recognizes the set of yields of local Td rooted at that label in the original
set. Roughly, given the set of two-branching Td in which the local Td rooted
at a given label are embedded, we form a T(d — 1) automaton with the labels
of the images of the yield as the label alphabet (B, C, ... in Figure 14) and
the labels of the other nodes in the two-branching Td (its spine) as the states
(the ‘A’s). The idea is that the spines of the two-branching Td form a run
of the automaton which licenses the yield of the original Td as witnessed by
the parallel structure formed by the image of that yield. (That is, we take the
relationship between the root of the two-branching local Td and the root of its
yield to be the projection mapping states to labels.) Hence the set of yields of
the local Td rooted at that label in the original set of Td are recognizable.

This gives us the generalization of the grammars and automata that charac-
terize the definable sets with unbounded branching.



DEFINITION 6.4 (Generalized Td Grammar/Automaton)
A generalized Td grammar over an alphabet ¥ is a (potentially infinite) set of
Y-labeled local Td in which, for each o € %, the set of yields of the Td with
root labeled o is a generalized recognizable set of T(d — 1).

A generalized Td automaton over an alphabet ¥ and a finite state set @ is
a (potentially infinite) set of pairs from the product of ¥ and the set of Q-
labeled local Td in which the right projection of the set forms a generalized Td
grammar over (.

DEFINITION 6.5 (Generalized Local/Recognizable Set)
A set of Y-labeled Td is a generalized local set iff it is G(X¢) for some generalized
Td grammar G over ¥ and some X C X.

A set of X-labeled Td is a generalized recognizable set iff it is A(Qo) for some
generalized Td automaton A4 over ¥ and @ and some Qg C Q.

Note that the one-dimensional case is degenerate; all T1 are unary-branching
since the yields of the local structures are just points. In the two-dimensional
case the grammars are, in essence, CFGs in which the set of productions is,
itself, a regular set. Such grammars have been referred to as extended CFGs by
Thatcher [43] and as hypergrammars by Langendoen [23]. As we shall see, there
is a strong parallel between the sets recognized by generalized tree-automata
and the sets of trees licensed by GPSG grammars. Our preferred terminology
emphasizes this connection.

THEOREM 6.6
A set of ¥-labeled Td is definable in wSwTd iff it is a generalized recognizable
set.

7 wSwT2—GPSG

Generalized Phrase-Structure Grammar (GPSG) [13] is a non-transformational
account of syntax based on a number of generalizations of CFGs. To begin with,
categories (labels) are not atomic but, rather, are drawn from a (finite) set of
non-recursive feature structures. Secondly, productions are factored into two
components: ID rules, which determine constituency but leave left-to-right or-
der of the yield unspecified, and LP rules, which determine that order. The
elements of these rules may be underspecified—they may refer to classes of
categories (feature-structures) by specifying only the features that determine
the class. Additionally, the individual elements in the yield of the ID rules may
be iterated with a Kleene star. Thus, the set of ID rules is not necessarily finite
but is regular. The interpretation of the ID and LP rules is precisely the same
as the notion of licensing we use: a tree is licensed by the grammar iff each
of its local trees is licensed by the rules. Finally, this system of licensing trees
via constraints is extended with an extensive system of interacting restrictions,
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principles and constraints on the distribution of features in local trees and the
set of ID rules is closed under a set of meta-rules that capture syntactic alter-
ations such as question formation, passivization, topicalization, coordination,
etc.

To a remarkable degree, these generalizations are consonant with the nature
of definitions within wSwT2. The ID rules are all directly stateable in terms
of <3, the LP rules in terms of «;. The iterated categories can be handled
naturally using quantification; working on a foundation of T2 permits us to
license the unbounded branching of the corresponding sets of local trees. We
have already seen how to handle finite feature structures by interpreting their
paths as monadic predicates. The effect of the meta-rules can easily be ac-
commodated by, in essence, “multiplying them out” in defining the ID rules.
Finally, the effect of restrictions, principles and constraints can be captured as
well, although some of them (FSDs in particular) involve definitions of some
subtlety.® For details see [31, 30].

As an example, we will look at the GPSG account of coordination. Arbitrar-
ily branching coordination (in contrast to the binary coordination of conjunc-
tions like but) is licensed by the following rules:

X — H[CONJ,,], H{CONJ,,]*
where (ag, 1) € {(and,NIL) , (NIL, and) , {neither, nor) , ...}

X[CONJ NIL] — H
X[CONJ a] — [SUBCAT a], H

[CONJ4,] < [CONJg,]
where ag € {both, either, neither, NIL}
and oy € {and, but, nor, or}

[SUBCAT] < [~ SUBCAT]

The first of these is an ID rule schema (the iterating coordination schema) that

5This variation in the complexity of the definitions reflects a similar variation in the definitions of [13].



says that a member of any category (X is radically underspecified—it unifies
with every category) can consist of two or more constituents, each marked as
a head (H), one of which has a value ag for the CONJ feature and the rest of
which have value a; for CONJ, where ag and a7 are drawn from the specified
set of pairs. The fact the constituents are marked as heads forces them, by the
Head Feature Convention, to agree with their containing constituent on certain
features, thus coordinated VPs form a VP, etc.

The second two ID rules simply realize the coordinating conjunctions. Cat-
egories of type [SUBCAT z] are lexical—they are expressed as the lexeme ‘z’.

Finally, the last two items are LP rules the first of which (a schema) gives
the relative left-to-right ordering of the of the various coordinating conjunctions
and the second of which states that members of lexical categories precede those
of non-lexical categories.

This gives accounts like that of Figure 15 in which arbitrarily many XPs,
along with their appropriate conjunctions, combine to form another XP. The
fact that both (and, NIL) and (NIL, and) are licensed admits both Asa Bo and
Cal, in which the iterated conjunction is NIL, and Asa and Bo and Cal, in
which the single conjunction is NIL.

The translation to wSwT2 is nearly immediate. The ID rules are interpreted
as local constraints. The full translation requires one such constraint to hold
for every local tree.

CS™(z,11) = H(y1) A(CONJ,a0)(y1) A (32)[z <92 2 A 2 % y1]A
(Vz2)[z 92 2 = (2 = y1 VH(2) A (CONJ, 01)(2))]
CONJniL(z,y) = (CONJ,NIL)(z) A H(y)A
(V2)[z <2 2 = 2z = Y]
CONJa(z,91,92) = (CONJ,a)(x) A (SUBCAT, a)(y1) A H(y2)A
(

V2)[z <2z = (2R y1Vz=y2)
The LP rules are universal constraints holding for all siblings:

(Yy1,y2)[(F2)[z <2 y1 AT <2 ya] —
((CONJ, a0)(y1) A (CONJ, a1)(y2) = —wa <1 91)]

(YY1, y2)[((3z) [z <2 y1 AT <2 y2] —
((SUBCAT)(y1) A ~(SUBCAT)(y2) = —y2 <1 y1)]

The intent, here, is to demonstrate the directness of the translation between
the GPSG grammar and the wSwT2 axioms. To a large extent, this is a
consequence of the similarity between the descriptive facilities of the two for-
malisms. The relationship between the two is very much like that of TAG and
wS2T3. There are linguistic principles that are implicit in the standard gram-
mars which must be stated explicitly in the model-theoretic approach and the
model-theoretic approach generalizes the grammars slightly,® but, to a large

SFor instance, in wSwT2 the ID rules can form arbitrary regular sets, whereas in GPSG only individual
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extent, they may be seen as alternative means of describing the same classes
of languages.

8 wSwT3—Generalized Tree Adjoining Grammar

Since the step from wSn'T2 to wSn'T3 takes us, in essence, from CFGs to TAGs
and the step from wSnT2 to wSwT?2 takes us from CFGs to GPSG, we might
say the step from wSn'T3 to wSwT3 takes us from TAGs to Generalized TAGS.
These are non-strict TAGs in which the set of elementary trees is required only
to be recognizable or, equivalently, they can be taken to be generalized T3
automata.

Given GPSG’s elegant account of coordination, this is the obvious place to
look for potential usefulness of the added power of Generalized TAG. As it
turns out, both the ability to ‘flatten’ the structure and the ability to factor
out constraints of different sorts have the potential to simplify existing TAG
accounts. A more detailed treatment can be found in [36].

8.1 Ordinary Conjunction

The XTAG grammar [49] treats coordination in two cases. Non-VP coordina-
tion is accomplished with a family of auxiliary trees anchored by conj adjoining

constituents can be iterated.
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[conj X] to the right of X (for X in Adj, A, P, PP, N, NP, Det, or S) (Figure 16)
with additional trees handling multi-word conjunctions such as either/or. In
the case of multiple conjunction this admits analyses with all possible nesting
of the scopes. This is appropriate when the conjunctions are of the ordinary
sort but it is a clear case of over-generation in the case of lists conjoined by
commas. This is addressed by adding a ‘conj’ feature that prohibits adjunction
of comma trees into conj trees of any other type.

As the set of trees formed by iterated binary conjunction is recognizable, one
can accomplish the same end in Generalized TAG by treating the coordination
as a single adjunction (Figure 17). This allows the idiosyncratic characteristics
of the various conjunctions to be handled within single adjoined structures—not
only limiting comma trees, for instance, to be left branching, but also accom-
modating unbounded multi-word iterated conjunctions like neither/nor. Since
we are not limited to recognizable sets, but can admit unbounded branching in
our auxiliary trees, we can push this flattening down to the second-dimension
as well, adopting genuinely flat accounts of iterated conjunction. Moreover,
moving to the signature of wSwT3 allows adoption of a GPSG-style factoring
of constituency and precedence constraints. Thus one can, if one is so inclined,
import the GPSG account of the syntax of coordination directly into General-
ized TAG.

8.2 Predicative Coordination

VP coordination, such as gapping and right-node-raising constructions, have
always been problematic in TAG in that, while the linguistic principles that
motivate TAG require predicates and their arguments to occur within the same
elementary structure, the constructions require arguments of multiple verbs to
be realized by a single constituent. Joshi and Schabes [20] proposed to handle
this with a mechanism that merges trees, collapsing their common structure
(Figure 18).  Sarkar and Joshi [39] refine this by moving to DAGs for the
derivation structure. This leaves open the question of whether to merge the
derived trees or not. If one insists on traditional single-rooted trees the derived
structures can be collapsed. On the other hand, for many purposes the deriva-
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tion tree itself is of more interest than the structure it describes; the fact that
the structure it describes may not be entirely tree-like may be ignored.

Part of the attraction of approaching TAG from a model-theoretic point of
view is that it allows one to treat the various constraints that determine the
configurations of the elementary structures independently. As we have shown
in [35] this allows modularization of the grammar of the sort suggested by Vijay-
Shanker and Schabes [45] and developed variously by Becker [1], Evans and
Weir and others at Sussex [11, 42], Candito [4], and Xia, Palmer, Vijay-Shanker
and Rosenweig. [48] In particular, a verb, rather than selecting a specific set
of elementary trees, may be thought of as selecting a set of constraints—all
verbs might require, for instance, a subject, while transitive verbs would re-
quire, in addition, a direct object and ditransitive verbs an indirect object as
well. Limitations on the actual configurations in which these arguments might
be realized would, presumably, be consequences of independently motivated
constraints (Figure 19). The set of elementary trees selected by a lexical item
in the traditional presentation of a LTAG (Lexicalized TAG) grammar is the
set of all trees satisfying the constraints it selects in this presentation.

This allows both derivation and derived structures to be of the traditional
sorts. Instead it admits what amounts to elementary trees in which arguments
may be missing—although they will be present in the form of constraints on
where the tree may occur. In practice, when wSwT3 axioms are translated into
T3 automata, such constraints will show up in the states assigned to the nodes
in the structures—equivalent to introducing features to realize them. Thus,
again, we can adopt something very close, in spirit, to a GPSG-style account
of VP coordination, but without requiring the grammar writer to multiply out
the details of the way in which constraints are propagated.



9 Higher Dimensions—Weir’s Control Language
Hierarchy

So far, we have established that wMSO definability in one dimension charac-
terizes regular languages, in two dimensions characterizes CFLs and in three
dimensions characterizes TALs. It’s easy to see, as well, that definability in
zero dimensions characterizes the finite sets. What is left is to determine the
complexity of the string languages definable in dimensions higher than three.
Here again, it turns out that there is a known hierarchy of language classes
that is characterized by definability in our hierarchy of structures.

9.1 Wer’s Control Language Hierarchy

In [47] Weir defines a hierarchy of control languages” based on Labeled Distin-
guished Grammars (LDG). These are, in essence, sets of labeled productions
in which each right-hand side has a distinguished element, its head. As in our
headed two-dimensional structures, for each node in a derivation tree of a LDG
there is a unique sequence of heads leading from that node to a leaf. We will
refer to these paths as the spines of the tree. Each spine is associated with a
control word: the sequence of labels of the productions that fall along the path.
The set of all control words occurring in a set of derivation trees is referred to
as its control set.

Weir generates his hierarchy by associating LDGs with restricted control
sets.

DEFINITION 9.1
Let G be a LDG and C a language over the labels of G. Then L(G,C) is the
set of string yields of the derivation trees of G with control sets contained in
C.

Let C; be CFL.

Let C;+1 be the class of all L(G, C) for some LDG G and C € C;.

The fact that this hierarchy is proper has been shown by Palis and Shende [26]
by establishing pumping lemmas for each level of the hierarchy.

To get a sense of how this mechanism corresponds to Td grammars, consider
the LDG of Figure 20. The control set of the derivation tree in the figure
is {P,P,, PsPy, P,}. Consider, then, the derivation trees of L(G,C) where
C e CFL (so L(G,C) € C2). As C is a CFL, there is some CFG, say G', that
generates it. Thus, each of the control words in the derivation trees of L(G, C)
is the yield of a derivation tree in G'. (See Figure 21.) The idea is to build
a T3 in which the derivation trees of the control words form “vertical slices”
through the structure extending above the spines of the derivation tree of G.

"These are a generalization of Khabbaz’s control languages [22] which correspond to the linear version
of Weir’s control languages—those in which each derivation tree is associated with a single control word.
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Such a structure is given on the right-hand side of the figure. This turns out
to always be possible and the construction generalizes easily to arbitrary C;
and arbitrary dimensions. Thus each language in C; can be shown to be the
string yield of a recognizable set of T(i + 1).8 (A detailed exposition of the
constructions is in preparation [29].)

8The ‘+1’ reflects the fact that Weir’s hierarchy has the CFLs at level one while we have them at level
two.



The proof of the opposite direction of the characterization involves a gener-
alized notion of spine paralleling our notion of yields of arbitrary dimension.
If T is a set of ¥-labeled headed Td, for each i < d we define Spineé(T) to be
the set of i-dimensional “vertical slices” (again, in a particular sense) through
the Td of T. Tt can be shown that if T is recognizable then so is Spine%(T) for
each ¢ < d.

The key lemma establishes that these spine functions commute with the yield
functions:

LEMMA 9.2

Spine! (Yield] (7)) = Yield,_;,,(Spine, "**(T)).

With this we get that the one-dimensional spines of the two-dimensional yields
of a recognizable set of X-labeled headed Td are the one-dimensional yields of
its (d—1)-dimensional spines. Since those (d — 1)-dimensional spines are recog-
nizable sets of T(d — 1), we get, by induction on d, that their one-dimensional
yields form a language in C4_». Consequently, the one-dimensional yield of the
set is in Cq_1.

THEOREM 9.3

A string language is Yieldcli(’ll‘) for some T, a recognizable set of Td, d > 2, iff
it is in Cdf]_.

9.2  Applications

One potential linguistic application of the higher-dimensional structures pro-
vides a potential resolution to a well-known semantic difficulty with the stan-
dard TAG account of modifiers. This is a result of the fact that there are
selectional constraints that restrict where modifiers adjoin. The locative PP to
the mailbox, for instance, may modfy the verb walk but not the feed.

Asa walked her dog to the mailbox
* Asa fed her dog to the mailbox

Here, there is no problem. The SA constraint associated with the VP can either
permit or block adjunction of locative PPs. The problem occurs when there
are multiple modifiers. The selectional restrictions hold no matter how many
modifiers there are and in whatever order they are adjoined.

Asa walked her dog yesterday to the mailbox
* Asa fed her dog yesterday to the mailbox

The problem is that in the standard TAG account, for this word order, the
PP does not adjoin directly into the initial tree but, rather, adjoins first into
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the AP with the resulting derived auxiliary tree adjoining into the initial tree.
But the AP yesterday is compatible with both walk and feed. Thus the se-
lectional restriction is no longer a local relationship but must stretch across
the intervening tree. In this case, the derivation trees are too finely resolved.
The order of adjunction is reflected in the structure of the derivation tree, but
the selectional restrictions must hold between the modified VP and all of its
modifiers regardless of the order in which they combine.

We can contrast this situation with that of predicative adjunction, the mech-
anism by which sentential complements are formed. Consider

Cal thinks Bo wanted Asa to walk. ..
Cal wants Bo to think Asa walked. ..

Here the initial tree is the tree for walk with auxiliary trees for want and
think adjoining at its root. But in this circumstance the order of adjunction is
critical. If we adjoin think into want we get the first order. If we adjoin them
the other way we get the second. In both cases whether walk is tensed or not
depends on the characteristics of the immediately local auxiliary tree—think
takes a tensed complement, want takes an untensed complement.

So sometimes the order of adjunction is irrelevant and at other times it is
critical. At least to this extent modifier and predicative adjunction are distinct
processes. In [40] Schabes and Shieber proposed to accomodate this distinction
by permitting multiple modifier trees to adjoin directly into the same node while
limiting predicative auxiliary trees to a single adjunction at a given node. One
of the difficulties of this approach is that the linear order of the modifiers
becomes underspecified. While they must nest in some way in the derived tree,
the order is not determined by the derivation tree.



We can achieve the same effect without losing the functional relationship
between derivation and derived structures by interpreting modifier adjunction
as concatenation in the fourth dimension. We allow modifier trees to com-
bine, in the third dimension, only with other modifier trees. In doing so, they
derive a compound modifier structure. This is then combined, in the fourth
dimension, with the modified structure. Thus all modifiers are local, in the
fourth dimension, to the modified word—immediate domination in the fourth
dimension becomes the mediator of selectional restrictions on modifiers—but
the structural relationships between the modifiers are fully resolved and po-
tential semantic or pragmatic restrictions on their nesting can still be enforced
via domination in the third dimension. Such an approach would give us four
dimensional structures in which each dimension corresponds to a distinct type
of syntactic relationship: string adjacency, constituency, predicative adunction
and modification.

10 Conclusion

The results we have discussed are all based on a single hierarchy of multi-
dimensional structures with uniform notions of language-theoretic and model-
theoretic mechanisms. We have tried to show how, by varying the parameters
of the structures—their dimension and branching factors—we can obtain useful
characterizations of the classes of structures employed by a range of theories
of syntax. One of the things that is remarkable, is the extent to which that
range of theories covers “tree-based” theories of syntax. This is not, however,
coincidental. These theories are “tree-based” because they share a common
foundation in the notion that structural properties of language are direct re-
flections of some sort of constituency. The hierarchy of dimensions in our
structures corresponds to a hierarchy of higher-order types of constituency. In
some sense, the range of theories we treat can be seen as an exploration of the
corresponding range of notions of constituency.

There are a variety of issues within this body of work which are yet to be re-
solved. From the purely theoretical perspective there is the question of whether
the decidability results for the full second order theory of the one- and two-
dimensional structures can be extended throughout the hierarchy of structures.
While the details of this lift are more complicated (and yet unresolved) it seems
clear that it will, in fact, go through. This would yield an infinite hierarchy of
decidable theories that strictly extend SnS.

From the perspective of Computational Linguistics there are both theoret-
ical and practical issues open. One question has to do with whether there
are compelling linguistic motivations for moving to the higher order types of
constituency. The third level of Weir’s hierarchy (our fourth level) has shown
up occasionally, for instance, in accounts of certain syntactic phenomena in



Hungarian or in mechanisms for generating paraphrases. But it is not clear yet
whether these uses of the higher levels of the hierarchies are actually necessary
or whether there is some theoretically plausible way of making sense of the
higher-order constituency relationships they imply. From a practical perspec-
tive there is a question of whether the compilation of formulae to automata and
the recognition process for the higher-dimensional automata can be feasibly im-
plemented. Should this be the case, there is a very attractive possibility of using
these mechanisms as a highly efficient and linguistically transparent method of
developing and maintaining large-scale TAG (or higher-order) grammars.
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