Generalized Tree-Adjoining Grammar

James Rogers
School of Computer Science
Univ. of Central Florida
jrogers@cs.ucf.edu

Abstract

This paper continues a program extending re-
sults related to the descriptive characterization
of the CFLs in terms of definability in the weak
monadic second-order theory of trees to the
TALs and the entire hierarchy of Weir’s Con-
trol Languages. Previously, we have shown that
the languages in this hierarchy can be char-
acterized by definability in the weak monadic
second-order theories of a generalization of trees
to increasingly higher dimensions. Here, we ex-
plore the effect of admitting models with arbi-
trary finite branching. In the two-dimensional
case we have shown previously that this ad-
mits tree sets recognized by infinite, but reg-
ular, tree-automata. As these sets correspond,
in a very strong sense, to the sets of trees li-
censed by GPSG grammars we have referred
to these automata as Generalized Finite-State
Tree Automata and the sets they accept as Gen-
eralized Recognizable Sets of trees. In lifting
this result to the third and higher dimension,
we show that the definable sets of structures
are exactly those recognized by d-dimensional
tree automata which are, in essence, generalized
recognizable sets of (d — 1)-dimensional struc-
tures. In three-dimensions, these correspond to
Tree-Adjoining Grammars in which the set of
initial trees can be any generalized recognizable
set of trees—a variation we refer to, by analogy,
as Generalized Tree Adjoining Grammars. We
show that this permits adoption of GPSG-style
accounts of coordination which can potentially
provide a conceptually clean account of coordi-
nate constructions that have been problematic
for TAG in the past.

1 Automata over Multi-Dimensional
Trees

Over the last few years we have been explor-
ing the generalization of long standing descrip-
tive characterizations of the regular (Biichi,
1960; Elgot, 1961) and context-free (Doner,
1970; Thatcher and Wright, 1968) languages—
characterizations in terms of model-theoretic
definability over certain classes of structures—
to the Tree-Adjoining Languages and beyond.
The perspective that underlies this generaliza-
tion is an analogy between TAGs as a tree-
rewriting formalism and CFGs as a string
rewriting formalism. Just as CFGs, in a stan-
dard conception, build trees by expanding non-
terminal nodes into strings of child nodes—in
essence attaching a depth-one tree at the fron-
tier of a tree—TAGs can be conceived as build-
ing three-dimensional tree-like structures by ex-
panding nodes (at which adjunction is permit-
ted) into trees of child nodes (the adjoined aux-
iliary tree)—in essence attaching a depth-one
pyramidal structure at the frontier of a sim-
ilar structure of arbitrary depth. There is a
direct and easy mapping between these three-
dimensional derivation structures and the TAG
derivation trees of the standard sort.! The two-
dimensional yield of the set of these structures
generated by a TAG is the set of trees the TAG
generates; the one-dimensional yield of that set
of trees is its string language.

At this point, it should be clear that this pro-
cess iterates: as we increase the dimension of
the structures we increase the complexity of the
string languages. We can show that the hierar-
chy of languages generated in this way coincides

'Each node in the (two-dimensional) derivation tree
is represented in the three-dimensional structure by the
actual tree it names.

with Wier’s Control Language Hierarchy (Weir,
1992). The analogy also extends in the other
direction. If we consider a mechanism that
expands nodes into single nodes—so that the
rewrite rules are depth one single-dimensional
structures—we get the regular languages.?

For all this to work smoothly we need a uni-
form hierarchy of domains on which to build
these structures. Here, again, we start in the
two-dimensional realm of trees and generalize
in both directions. We take our trees to be la-
beled tree-domains in the sense of Gorn (1967).
These are just sets of tree-addresses expressed
as strings over the natural numbers. The ad-
dress of the root of the tree is the empty string
(which we will denote €) and the addresses of the
children of a node at address w are w0, wl,...
in left-to-right order. A set of such strings is
a well-formed tree-domain iff it is prefix closed
(which corresponds to being downward closed
wrt to domination) and if, whenever wi is in
the set then wj for all j < 7 is in the set as well
(which corresponds to the addresses of each set
of children being downward closed wrt less-than
in their final element). In stepping down to one-
dimensional structures we get string-domains
which are simply sets of natural numbers that
are downward closed wrt less-than (i.e., initial
segments of N ordered by <).

The analogy is more uniform if we express
the natural numbers in unary: the numeral for
i € N is a sequence of 5 ‘I’s (1°). Thus down-
ward closure wrt to less-than becomes prefix clo-
sure wrt the sequences of ‘1’s. A string-domain,
then, is just a prefix closed set of sequences of
‘1’s. A tree-domain is a set of sequences of se-
quences of ‘1’s that is hereditarily prefix closed
in the sense that the second-order sequences are
prefix closed and, for any second-order sequence
s in the tree-domain T', the set of first-order se-
quences {w | s - (w) € T} is also prefix closed.

To generalize this to higher dimensions, we
note, first, that the address of a node in a tree-
domain is exactly the sequence of string ad-
dresses one encounters in following the path in
the tree from the root to that node. By anal-
ogy, then, the address of a node in a three-
dimensional tree is the sequence of tree ad-

2If we take the rules to be zero-dimensional structures
they license no rewriting at all and we get exactly the
finite languages.

dresses one encounters in following the path
in the three-dimensional structure from the
root to that node. Consequently, such an ad-
dress is a third-order sequence of ‘1’s: a se-
quence of tree addresses which are themselves
sequences of string addresses which are them-
selves sequences of ‘1’s. A three-dimensional
tree-domain is any set of third-order sequences
of ‘1’s which is hereditarily prefixed closed and,
in general, a d-dimensional tree-domain is any
d™ -order sequence of ‘1’s that is hereditar-
ily prefix closed. We will denote the class of
all d™ -order sequences of ‘1’s as %1 and the
class of all d-dimensional tree-domains as T¢.
Thus T C '1 = 1* is the class of string do-
mains, T? C 21 = (1*)* is the class of ordinary
tree-domains, etc. We will refer to individual
structures in the class T¢ as ‘Td’s—ordinary
trees-domains are ‘T2’s and string-domains are
‘T1’s.® We will admit empty Td, which we de-
note ‘0’

It is critical to be as clear as possible when
discussing these higher-order sequences. We
will generally employ w, v, etc. to denote se-
quences of a given order and s, t, etc. for se-
quences of the next higher order. Concatenation
(‘’) will always be an operation on sequences
of the same order. Thus s - (w) denotes the
(d+1)-order sequence in which the final d-order
sequence is w. (To be consistent, when we re-
ferred to the sequence wi above, we should, per-
haps, have referred to w - (1).) We will also em-
ploy p to denote sequences of the next higher
order than s when necessary. The residual am-
biguity arises from the fact that the zero-length
sequence of any order is just ‘’. Thus, ‘€’ de-
notes the zero length sequence of any order, ‘(¢)’
denotes the length one sequence of any order
greater than one (containing a single zero-length
sequence of the next lower order), etc. The or-
ders of sequences within a sequence are always
uniform. Thus, while ‘(¢,e)’ denotes a length

3We have referred, in the past, to these structures as
Tree Manifolds, but as a hierarchy of equivalent struc-
tures (with considerably different presentation) has been
previously introduced under the term multi-dimensional
trees (Baldwin and Strawn, 1991) (unfortunately this
is far from the only class of structures that have been
termed such) we will adopt that terminology, using
‘multi-dimensional tree-domain’ when we wish to be
clear about the specific structures on which our notion
is based.

two sequence in which both ‘¢’ denote empty
sequences of the same order, ‘(g,(¢))’ denotes
a length two sequence containing a zero length
sequence of the next lower order and a length
one sequence of that same order itself containing
a zero length sequence of the next lower order
yet—the two occurrences of ‘e’ denote sequences
of different orders. The actual order intended
will always either be clear from the context or
will be intentionally unspecified—thus the root
of a structure of any order is always at address
‘e’

A Y-labeled Td is a pair (T,7) where T is a
d-dimensional tree-domain and 7 : 7T — ¥ is an
assignment of labels in ¥ to nodes in T. We
will denote the class of all ©-labeled Td as T¢,.
We will use ‘D’ to denote empty X-labeled Td
as well.

1.1 Td Grammars and Automata

A Td Grammar is just a finite set of local (depth
one in their major dimension) ¥-labeled Td,
licensing the expansion of nodes labeled identi-
cally to the root into a ¥-labeled T(d — 1) of
children. We will take these to be presented as
a set of pairs consisting of the label of the root
and the child structure:

GIC Y xTE!, finite.

A Y-labeled Td licensed by such a grammar,
relative to some distinguished set of initial sym-
bols, iff its root is labeled with one of the initial
symbols and every local Td it includes is con-
tained in the grammar:

def

G(Xo) =
{T =(T,7) | T finite, 7(c) € =,

and (Vs € T)((r(5), (T,) lon(r, 5)) € 911
where Ch(T), s) e
and

{w e T | 5. (w) € T}

(T,7) lch(r, s) =
(Ch(T,s),{w — 7(s- (w)) | w € Ch(T,s)}).

In the two-dimensional case this is, in essence,
a presentation of the the set of derivation trees
of a CFG as a local set of trees (Gécseg and
Steinby, 1984) and we will adopt this terminol-
ogy for all levels.

Definition 1 A set of X-labeled Td is local iff
it is GH(Sg) for some Td grammar G* and set
of initial labels .

This generalizes the CFGs in two ways. First,
we allow for multiple start symbols, a common
relaxation, particularly when considering sets
of derivation trees. Second, we do not distin-
guish terminals and non-terminals in the normal
sense: any node can be expanded if it is labeled
with a symbol labeling the root of local Td in G¢
in which the child structure is non-empty. On
the other hand, every local Td in the licensed
structure must be explicitly licensed by G¢ and
this includes the nodes on the frontier for which
the child structures are empty. A symbol o € ¥
may label a node on the frontier of the struc-
ture iff it is licensed by a local tree in G¢ with an
empty child structure: (o, }). In this way the set
of terminal symbols is distinguished but, since
o may license both empty and non-empty child
structures they may, potentially, be rewritten.
Of course, neither of these generalizations af-
fects the class of string languages these trees
yield.*

Just as we use the two-dimensional case,
CFGs, as the model for our grammars, we use
finite-state tree-automata as the model for our
automata. These can be understood as a mech-
anism that licenses Y-labeled trees on the basis
of an assignment of states, drawn from a finite
set, to the nodes in the tree. The states assigned
to the frontier nodes and the root are distin-
guished and the states assigned to each local
tree as well as the label assigned to its root are
constrained. Alternatively, they can be under-
stood as a CFG generating trees labeled with a
state set along with a mapping from @ to X.
A Td Automaton with state set (Q and label set
Y is a finite set of triples:

.AdQExQxT‘é_l.

“We can restrict these grammars to the traditional
CFGs by requiring Xy to be singleton and by requiring
the set of symbols licensed to label nodes with no chil-
dren to be disjoint from those licensed to label nodes
with children. Conversely, we can convert any of these
grammars into CFGs of the traditional sort that gen-
erate the same string language by adding a new start
symbol which rewrites only to the symbols in 3¢ and
by distinguishing two variants of each symbol, one that
may (potentially) label interior nodes and one that may
(potentially) label leaves.

The interpretation of a tuple {(co,q,7) € A4 is
that if a node of a Td is labeled ¢ and T encodes
the assignment of states to its children, then
that node may be assigned state ¢.> A run of an
Td automaton A on a ¥-labeled Td T = (T,)
is an assignment r : T' — @ of states in @ to
nodes in 7" in which each assignment is licensed
by A. Note that this implies that a maximal
node (wrt to the major dimension) labeled o
may be assigned state g only if there is a tuple
(0,q,0) € AL If we let Qo C Q be any set
of accepting states, then the set of (finite) X-
labeled Td recognized by A, relative to @, is
that set for which there is a run of A that assigns
the root a state in Qy:

A(Qo) & {T = (T,7) | T finite and

Jr: T — @ such that r(¢) € Qo and
for all s € T,

(7(),7(5): (T,7) [on(T,)) € A}

Definition 2 A set of X-labeled Td is recogniz-
able iff it is A(Qo) for some Td automaton A
and set of accepting states Q.

The classes of recognizable sets strictly in-
clude the corresponding classes of local sets.
The set of {a, b}-labeled n-branching structures
in which exactly one node is labeled ‘a’ is, for
instance, recognizable but not local. The rela-
tionship between the mechanisms is, perhaps,
clearer if one views the automata as a vari-
ety of grammar that licenses two structures: a
Q@-labeled Td (which determines the structure)
along with an isomorphic X-labeled Td (the ac-
tual recognized structure). It is important to
note that the mapping between these structures
associates labels in ¥ with local ()-labeled Td,
not with the label of the root alone. We can
turn this into a genuine homomorphism if we
take the basic structure to be a ¥ x Q-labeled

5This is a “bottom-up” interpretation. There is an
analogous “top-down” interpretation, but for all d > 2,
Td automata that are deterministic under the top-down
interpretation are strictly weaker than those that are
non-deterministic, while those that are deterministic un-
der the bottom-up interpretation are equivalent to the
non-deterministic variety. It should be emphasized that
the only place the distinction between top-down and
bottom-up arises is in the definition of determinism.
These automata are interpreted purely declaratively, as
licensing assignments of states to nodes.

tree. In which case the homomorphism is sim-
ply a projection. In this way, the characteri-
zations of the regular sets of strings and recog-
nizable sets of trees in terms of the correspond-
ing local sets (originally due to Chomsky and
Schiitzenberger (1963) and Thatcher (1967))
generalize easily.

Lemma 1 A set of X-labeled Td is recognizable
iff it is the projection of a local set.

Just as the two-dimensional grammars are
equivalent to CFGs, the two-dimensional au-
tomata are equivalent to the finite-state tree-
automata. In the one-dimensional case we
get ordinary (non-deterministic) finite-state au-
tomata over strings. In the three-dimensional
case we get a slight generalization of Tree-
Adjoining Grammars with adjoining con-
straints.

Definition 3 We will say that a TAG is non-
strict if it permits the root and foot of auziliary
trees to differ in their label and to differ from
the label of the nodes to which they may adjoin.

Adjoining, in such a TAG, is completely con-
trolled by the adjoining constraints.> The sets
recognized by T3 automata are exactly the sets
of labeled T3 that correspond to the sets of
derivation trees of non-strict TAGs with adjoin-
ing constraints. (Rogers, 1997)

For the notion of yield to be well-defined at
dimensions three and higher we need a mech-
anism that determines the way in which the
maximal structures of the next lower dimen-
sion splice together. For T3 grammars and au-
tomata the issue that needs to be determined is,
in TAG terminology, which node is the “foot” of
the tree. To settle this, we will assume classes
of distinguished states, one for each dimension,
that pick out exactly one order d head node in
each Td child structure—one order 1 head in
each string of children in every local tree, one or-
der 2 head in each tree of children in every local
T3, etc. The node corresponding to the foot of a

Such a relaxation has been employed in a number of
contexts. An example is Feature-structure based TAG
(FTAG), the variant most commonly employed in appli-
cations, where it is not entirely clear what distinguishes
the labels which select auxiliary trees from the other fea-
tures of the nodes which are only required to agree up
to unifiability.

structure is the maximal node (in the d** dimen-
sion) one reaches by following the path of (d—1)
order heads from the root. Using this mecha-
nism to define the (2-dimensional) yield, we get
that the set of trees yielded by the recognizable
sets of T3 are exactly the sets of trees generated
by non-strict TAGs with adjoining constraints.
Moreover, we can show that the hierarchy of
classes of string languages yielded by the recog-
nizable sets of Td coincide with the classes of
Weir’s hierarchy of Control Languages (1992).7

2 wSnTd, n < w

The key strength of this approach is that, as
with the characterization of the relationship be-
tween the local and recognizable sets, essentially
every result for regular languages lifts uniformly
to all levels of the hierarchy. The dimension of
the objects being manipulated becomes a pa-
rameter of the proof playing no essential role in
the reasoning it employs. In particular we get
that the classes are closed under determiniza-
tion (given a suitable notion of deterministic),
Boolean operations, projection and cylindrifica-
tion (“inverse” projection) and that emptiness
of the recognizable sets is decidable.

These results allow us to lift the charac-
terizations of the regular languages in terms
of the weak monadic second-order theory of
the natural numbers ordered by less-than
(wS1S) (Biichi, 1960; Elgot, 1961) and of the
recognizable sets of trees in terms of the weak
monadic second-order theory of the complete n-
branching tree (wSnS) (Doner, 1970; Thatcher
and Wright, 1968). Let T be the complete n-
branching Td—that in which every point has a
child structure that has depth n in all its di-
mensions other than d. Let

def
T = (T, <i)i<i<a
where, for all z,y € T4:

def _
zaqy & y=z-(p), pel

x Y 4% x:p<<3)>
andy:p.<...<3.<fw>)...>’

w € 1*
zay &5 p=ple- (s (W)
andy=p-(---(s-(w-1))---), we11¥

"Weir’s initial class is the CFLs which correspond to
our third level T2.

which is to say that z «; y iff x is the imme-
diate predecessor, or parent, of y in the 4P -
dimension.

The weak monadic second-order language of
T3 includes, in addition to symbols for the par-
ent relations and the usual logical connectives
and quantifiers, two sorts of variables: those
ranging over individuals (z1, y1, etc.) and those
ranging over finite sets (X1,Y7, etc.). We will
say

Tg E o1, Zn, X1y, Xim) [8]

iff ¢ is a formula with free variables among the
z; and X; and s is an assignment of individuals
and finite sets of individuals to those variables
which makes ¢ true in T¢. The set of all sen-
tences of this language that are satisfied by T¢
is the weak monadic second-order theory of T%,
denoted wSnTd.®

Definition 4 A set T of X-labeled Td s
definable in wSnTd iff there is a formula
o (X1, Xo)oex, with free variables among Xt
(interpreted as the domain of a Td) and X, for
each o € ¥ (interpreted as the set of o-labeled
points in T), such that

(T,7) €T <—
T o [Xe = T, Xo = {p| 7(p) = 0}].

It should be reasonably easy to see how any
recognizable set can be defined in this way. The
converse can be obtained by a simple lift of the
corresponding proofs for S1S and SnS. (Rogers,
1998a)

Theorem 1 A set of labeled Td is definable in
wSnTd, n < w, iff it is recognizable.

2.1 “Non-local” Relations

The strictly local nature of the immediate par-
ent relations makes them inconvenient for ex-
pressing many syntactic relationships. Part of
the strength of the characterization of recogniz-
able sets in terms of the monadic second-order
theories is that, as transitive closure is defin-
able in these theories, we can move to the non-
local versions of these relations without increas-
ing the complexity of the sets we define.

8wS1T1 is equivalent to wS1S in the sense of interin-
terpretability, as is wS1Td for all d. wSnT2 is interin-
terpretable with wSnS for all n > 2.

B((1,11)) =

[1?5] [1;1] [17;11] 7\\\\ N /\ \\\\ /\

T Le 1]

Figure 1: Embedding T2 in T2

Definition 5 A XY-Labeled Headed Td is a
structure:

l
(T, <", H, Ps)1<i<d, oex,

where Ty, is a rooted, connected subset of TS for
some n, and <1Z7|' 1s the irreflexive transitive clo-
sure of <;, inherited in the sense that if x <1:r Y
and x qiﬁ_l z and every point on the path be-
tween x and z in the i + 15° dimension lies on
the spine of its i* dimensional structure (the
sequence of 1 — 1 order heads from its root to its
yield) then z < y.

For a formal definition of this relation
see (Rogers, 1998a). Intuitively, in the two-
dimensional case it extends linear precedence
over dominance in the usual way, in the three-
dimensional case it, in essence, says that a node
in an adjoined tree dominates those nodes dom-
inated by the node at which it is adjoined iff it

dominates the foot of the adjoined tree.’

Theorem 2 A set of labeled Td is recognizable
iff it is weak monadic second-order definable as
a set of labeled headed Td.

3 wSwTd

Since automata and grammars are restricted to
be finite the branching factor of the sets they

9One can be flexible about which relations to include
in the signature of these structures. In (Rogers, 1998a)
we explicitly include both <; and J;—the extension of
<; to local structures. As each of these is definable, in
the monadic second-order language, from the others the
choice can be dictated by convenience.

license is finitely bounded. But all that bounds
the branching factor of the sets of models de-
finable in the signature of wSnTd is the fact
that we interpret them as subsets of a struc-
ture that has finitely bounded branching. In the
two-dimensional case, linguistic motivation for
admitting sets of models with unbounded (but
still finite) branching is well established, partic-
ularly in “flat” accounts of coordination. On the
model-theoretic side, we can accommodate such
accounts by moving to finite subsets of the w-
branching structure T%, that is, to wSwTd. By
lifting a proof of Rabin’s (Rabin, 1969) we can
show that this does not increase the descriptive
power.

Lemma 2 (from Rabin) There is an effec-
tive translation o — @' such that, for alln < w,
p € wSn'Td iff ¢' € wS2Td.

The translation is based on an embedding h
of T¢ into T¢. This is easiest to visualize in
the two dimensional case, where it is a stan-
dard embedding of arbitrarily branching trees
into binary branching trees (Figure 1): the im-
age of the k™™ child of a node is found by start-
ing at the image of that node and following the
path that takes the right child k£ times and then
the left child once. In terms of T2, this says
that h(s- (1)) is h(s) - (1)* . (¢). In essence, we
raise the type of the sequence of ‘1’s to an equal
length sequence of ‘(1)’s and add ‘(g)’.

We generalize this in two steps. First, assume
that the structure is two branching in all but its

(€]

[[1]

([1].[e]]

[[e1,[1]]

[[e,1]] [(e].[el]

[e,€

[[eell

([a1.[1]]

h([e, [111)

A1, 1111)

(e

h([[1],¢])

R E.

~

h(g
s\

h([le], [11)
 [[€].[1].€]

[[eN

[[el.[e]]

h([le], [e]])

Figure 2: Embedding the fragment of T3 which is two-branching in the first dimension into T3

highest two dimensions. Let:

def
= £

)
) def Raise(w) - (1)
) € Raise(s) - {(w))
)

)

def
= w, w € 1*

def h(s) - Raise(w) - (¢)

The function Raise raises the type of a sequence
s; h leaves simple sequences unchanged and,
for higher-order sequences, first raises the type
and then adds the (¢). An example of the em-
bedding in the three-dimensional case is illus-
trated in Figure 2. This map has two key prop-
erties. First, the image of this two-branching

Figure 3: Embedding T2, in T3

subset of T¢ in T¢ is exactly the set contain-
ing its (d-dimensional) root and the ((d — 1)-
dimensional) roots of its (d — 1)-dimensional
child structures, i.e. the set of all points that
are minimal wrt <;_1—clearly a definable sub-
set. Secondly, the map preserves <. Thus
every property of subsets of T¢ definable in
(T, <, H, P;)1<i<d,sex, which is to say every
property definable in wSw'Td, is definable in the
restriction of (T, 43’, H, P,)i<i<d,0cex to points
which have no sibling in the (d — 1)-dimension
that properly dominates them. The lemma then
follows by a simple induction on d.

The inductive step can be incorporated into
the map simply by recursively embedding each
element of higher-order sequences in their corre-
sponding two-branching structures before rais-

ing their type:

h(w) e w w € 1*
w)) ¥ 7(s)- Raise(h(w)) - (¢)

The three-dimensional case is illustrated in Fig-
ure 3 .

The range of h is a definable subset of the
range of h and is, therefore both definable and

+
preserves <" .

3.1 Generalized Recognizable Sets

In (Rogers, 1998b) we show that, for each o €
3, the set of strings labeling the children of
nodes labeled o in a set of trees definable in
wSwT?2 is a regular set. The proof involves ex-
tracting a grammar for the set (of strings) from

. /
Local Td in T, .y

(Tes (Tieys (Ttenys e N))

Gig0)

D (Tes Ty (e Teay))

“eYs

= image of yield

T (W)

Tl

Run of Ag o)
on image of yield.

Figure 4: Recognizability of T2 yields of recognizable sets of T3.

the automaton accepting the image of the set
trees in T3 which turns out to be right-regular.
It follows, then, that every such set of trees is
accepted by a T2 automaton that is infinite but
regular. In general, we refer to the class of all
finitely presentable Td automata as the class
of Generalized Td Automata. In practice, we
will restrict our attention to generalized Td au-
tomata in which, for each label/state pair, the
set of T(d — 1) expanding nodes with that label
and state is a Generalized Recognizable Set, that

is, a set that is itself recognized by a generalized
T(d — 1) automaton.!©

The corresponding grammars, in the two-
dimensional case, have been referred to as ez-
tended CFGs by Thatcher (Thatcher, 1967)
and as hypergrammars by Langendoen (Langen-

10At the d = 1 level one has that the local, recogniz-
able, and generalized recognizable sets of the next lower
order are all just the finite sets. Thus the recognizable
and generalized recognizable sets of strings coincide with
the regular sets.

doen, 1976). As we note in (Rogers, 1998b),
there is a strong parallel between the sets rec-
ognized by generalized tree-automata and the
sets of trees licensed by GPSG grammars: in
the regularity of the branching, in the capac-
ity to distinguish similarly labeled nodes via a
finite set of features, and in the ability to sep-
arate constituency constraints (<) from prece-
dence constraints (<1). Our preferred terminol-
ogy emphasizes this connection.

That every generalized recognizable set of Td
is definable in wSwTd can be established by in-
duction on d. To lift the other direction of the
characterization, suppose that T is a set of 3-
labeled Td definable in wSwTd. Again assume,
for induction, that the Td in T are 2-branching
in all but the d"" and (d — 1)** dimensions. By
the lifted version of Thatcher’s Lemma, T is
a projection of a local set of Td. Let T' be
the local set constructed in the proof of the

lemma. Let T'<q o) be the set of local Td oc-

curring in T" which are rooted at nodes labeled
(g,0). Clearly, this set is wSwTd definable; we
need to establish that the set of T(d—1) it yields
is a generalized recognizable set. By the lemma

we have that h(']I"<q’a)) is definable in wS2Td and

is, thus, a recognizable set. Moreover, because
h preserves < , the (d — 1)-dimensional yield of

h(']I"<q’J>) is the same as that of ’]I"(q,a>. By the

lifted version of Thatcher’s lemma, again, this
is also the yield of T”, a local set of 2-branching
Td. Let Gig0y € %' % ']I‘(Edfl) be the Td grammar
licensing that set. The pairs in G,) represent
Y'-labeled local Td: Td that are 2-branching in
all dimensions. These consist of a root ¢ and a
child T(d — 1) which, itself, consists of a root
(e) and a child T(d — 2), with the (d — 1) di-
mensional yield of h(’]I"<q,a>) being made up of
the (¢) points exclusively. (For an illustration
of the 3-dimensional case see Figure 4.) The
idea is to convert G, » into a T(d—1) automa-
ton (in which ¥’ serves both as the set of labels
and the set of states) that recognizes the (d—1)
dimensional yield of h(T;,). Let

o
Hh

oy —

(g,
(.0 (17 lon(r,) |
<Ula (T,7)) € g(q,a’)}'

A

This, in effect, interprets the pairs from G,),

consisting of a label ¢’ and a ¥'-labeled T(d—1)
(T, 7) as a triple consisting of a label o', a state
7(e) and the ¥'-labeled T(d — 2) yield of (T, 7).
Thus, it is a T(d — 1) automaton. To see that it
recognizes the yield of h(’]I"(q’g)) one need only to

note that the ¥'-labeled T(d—1) made up of the
non-‘(¢)” nodes of a Td in T” and the X'-labeled
T(d—1) made up of the ‘(¢)’ nodes (that is, the

image under h of the yield of the tree in T},)

are parallel T(d — 1) with the former being an

accepting run of A, ,y on the latter.

3.2 Generalized Tree-Adjoining
Grammar

Just as definability in wSwT2 captures the sets
of trees admitted by GPSG style grammars—
CFGs in which the rhs of productions may be
regular sets—definability in wSwT3 captures a
generalization of (non-strict) TAG in which the
set of initial trees may be any generalized recog-
nizable set—the direct analog of GPSG in the
domain of trees.!! Moreover, working within
wSwT3 allows factorization of independent con-
straints as in the separation of dominance and
precedence constraints in GPSG. Consequently,
we will refer to axiomatic definitions of syntactic
structures in the language of wSwT3 as Gener-
alized Tree-Adjoining Grammars.

4 Coordination in Generalized TAG

Given that one of the attributes of GPSG is
its elegant account of coordination, this is the
obvious place to look for potential usefulness of
the added power of Generalized TAG. While the
choice of structures must, in practice, be moti-
vated on linguistic grounds—which we make no
attempt to address—both the ability to ‘flatten’
the structure and the ability to factor out con-
straints of different sorts have the potential to
simplify existing TAG accounts.

4.1 Ordinary Conjunction

The XTAG grammar (Group, 1998) treats co-
ordination in two cases. Non-VP coordination
is accomplished with a family of auxiliary trees
anchored by conj adjoining [conj X] to the right
of X (for X in Adj, A, P, PP, N, NP, Det,

1 A similar sort of extension, known as Schema-TAGs,
shows up in (Harbusch et al., 1998). These were evi-
dently introduced by Weir in his dissertation proposal
although they do not appear in the dissertation it-
self. (Weir, 1988)

X

X* conjo X | X*

X [conj: comma]
X conjo

X* conj X\

[conj: comma|none] | [conj: none]

7

/N

conjo

/N

/N

X* conjo

/N

X* conjo X |

Figure 5: Non-verb coordination in XTAG

X

I

* .

X* conj X

X

/%\

X* (conj X)* conjo X |

| (and
Y

Figure 6: Non-verb coordination in Generalized TAG

or S) (Figure 5) with additional trees handling
multi-word conjunctions such as either/or. In
the case of multiple conjunction this admits
analyses with all possible nesting of the scopes.
This is appropriate when the conjunctions are
of the ordinary sort but it is a clear case of over-
generation in the case of lists conjoined by com-
mas. This is addressed by adding a ‘conj’ fea-
ture that prohibits adjunction of comma trees
into conj trees of any other type.

As the set of trees formed by iterated bi-
nary conjunction is recognizable, one can ac-
complish the same end in Generalized TAG by
treating the coordination as a single adjunc-
tion (Figure 6). This allows the idiosyncratic
characteristics of the various conjunctions to
be handled within single adjoined structures—
not only limiting comma trees, for instance, to
be left branching, but also accommodating un-
bounded multi-word iterated conjunctions like
neither/nor. Since we are not limited to recog-
nizable sets, but can admit unbounded branch-
ing in our auxiliary trees, we can push this flat-
tening down to the second-dimension as well,
adopting genuinely flat accounts of iterated con-
junction. Moreover, moving to the signature of
wSwT3 allows adoption of a GPSG-style factor-

ing of constituency and precedence constraints,
yielding a range of syntactic phenomena from a
small set of interacting constraints. Thus one
can, if one is so inclined, import the GPSG ac-
count of the syntax of coordination directly into
Generalized TAG.

From a theoretical perspective, one objection
to adopting such an account is that these it-
erated structures no longer appear to capture
minimal recursive constructions. However, it
seems more plausible to analyze a construction
like “neither Alan nor Barbara nor Carl” as a
single conjunction than as a nested structure.
This suggests that it might be reasonable to
base the notion of what constitutes a minimal
construction at least in part on its semantics
rather than purely on its structure.

From the practical point of view the issue is
more likely to be concern over the effect that
such an approach may have on the difficulty of
parsing. Here, though, at least in the case of it-
erated constructions like these, it seems unlikely
that there would be any effect on the asymptotic
complexity and very likely little effect on actual
performance: adding iterated initial trees sim-
ply adds an alternative between closing a tree
or projecting it to another iteration (or between

S VP S
NP| VP conjo VP

eats drinks

Figure 7: Predicative coordination in XTAG

(Vz)[(Verb(z) A Trans(z))
— ((3y)[Subj(y,)]
A(Jy)[ODbj(y, z)])]

Subj , ~

eats

b

(" obj 4 e
\V/ \QNPi/ an \V/

conjo TS VP
Subj. -
| u’.ll/m
"SNP

I
drinks

Figure 8: Predicative coordination in Generalized TAG

projecting in one way or another).

4.2 Predicative Coordination

VP coordination, such as gapping and right-
node-raising constructions, have always been
problematic in TAG in that, while TAG re-
quires predicates and their arguments to occur
within the same elementary structure, the con-
structions require arguments of multiple verbs
to be realized by a single constituent. Joshi and
Schabes (Joshi and Schabes, 1991) proposed to
handle this with a mechanism that merges trees,
collapsing their common structure. (Figure 7.)
Sarkar and Joshi (Sarkar and Joshi, 1996) re-
fine this by moving to DAGs for the deriva-
tion structure. This leaves open the question
of whether to merge the derived trees or not.
If one insists on traditional single-rooted trees
the derived structures can be collapsed. On the
other hand, for many purposes the derivation
tree itself is of more interest than the structure
it describes; the fact that it may not be entirely
tree-like may be ignored.

Part of the attraction of approaching TAG
from a model-theoretic point of view is that
it allows one to treat the various constraints
that determine the configurations of the ele-
mentary structures independently. As we have

shown in (Rogers, 1998c) this allows modular-
ization of the grammar of the sort suggested
by Vijay-Shanker and Schabes (Vijay-Shanker
and Schabes, 1992) and developed variously by
Becker (Becker, 1994), Evans and Weir and oth-
ers at Sussex (Evans et al., 1995; Smets, 1998),
Candito (Candito, 1996), and Xia, Palmer,
Vijay-Shanker and Rosenweig. (Xia et al., 1998)
In particular, a verb, rather than selecting a
specific set of elementary trees, may be thought
of as selecting a set of constraints—all verbs
might require, for instance, a subject, while
transitive verbs would require, in addition, a di-
rect object and ditransitive verbs an indirect ob-
ject as well. Limitations on the actual configu-
rations in which these arguments might be real-
ized would, presumably, be consequences of in-
dependently motivated constraints. (Figure 8.)
The set of elementary trees selected by a lexical
item in the traditional presentation of a LTAG
grammar is the set of all trees satisfying the con-
straints it selects in this presentation.'? Under
these circumstances, the requirement that the
linguistically significant relationships between a
predicate and its arguments be expressed in a
single elementary structure (here a set of con-
straints) is not inconsistent with the possibility

121 practice one is likely to pre-compile these.

that, under some circumstances, in coordinate
constructions for instance, their syntactic real-
ization might be shared between multiple pred-
icates.

This allows both derivation and derived struc-
tures to be of the traditional sorts. Instead
it admits what amounts to elementary trees
in which arguments may be missing—although
they will be present in the form of constraints
on where the tree may occur. In practice,
when wSwT3 axioms are translated into T3 au-
tomata, such constraints will show up in the
states assigned to the nodes in the structures—
equivalent to introducing features to realize
them. Thus, again, we can adopt something
very close, in spirit, to a GPSG-style account
of VP coordination, but without requiring the
grammar writer to multiply out the details of
the way in which constraints are propagated.

5 Conclusions

We have argued, previously, that by employ-
ing wSn'T3 as a sort of higher-level language,
one can define TAGs directly in terms of the
linguistic relationships they are meant to ex-
press and that, in doing so, one gets an extreme
degree of modularization of the grammar, ab-
straction away from the mechanical details of
issues like feature passing, and a clear expres-
sion of the linguistic theory the TAG embod-
ies. In this paper we have explored the con-
sequences of relaxing the finite bound on n—
an artificial restriction from the model-theoretic
point of view. We have shown that the classes
of sets of structures definable in the general the-
ories wSw'Td correspond to those recognized by
a natural hierarchy of infinite, but finitely pre-
sentable, automata and that they correspond, in
a strong sense, to the sets of structures licensed
by GPSG-style grammars raised to arbitrary di-
mension. We refer, then, to grammars defined
in wSwT3 as Generalized TAGs. In exploring
the utility of the generalization, we have taken
an initial look at the syntax of coordination and
show not only that a GPSG-style account of
coordination can be imported into Generalized
TAG essentially intact, but that this has the
potential to rationalize difficult cases of VP co-
ordination in a simple direct way.

References

William A. Baldwin and George O. Strawn.
1991. Multidimensional trees. Theoretical
Computer Science, 84:293-311.

Tilman Becker. 1994. Patterns in metarules.
In Proceedings of the 3rd TAG+ Workshop,
Paris.

J. R. Biichi. 1960. Weak second-order arith-
metic and finite automata. Zeitschrift fir
mathematische Logik und Grundlagen der
Mathematik, 6:66—-92.

Marie-Helene Candito. 1996. A principle-based
hierarchical representation of LTAGs. In Pro-
ceedings of COLING-96, Copenhagen.

N. Chomsky and M. P. Schiizenberger. 1963.
The algebraic theory of context-free lan-
guages. In P. Braffort and D. Hirschberg,
editors, Computer Programming and Formal
Systems, Studies in Logic and the Founda-
tions of Mathematics, pages 118-161. North-
Holland, Amsterdam, 2nd (1967) edition.

John Doner. 1970. Tree acceptors and some of
their applications. Journal of Computer and
System Sciences, 4:406-451.

Calvin C. Elgot. 1961. Decision problems of fi-
nite automata design and related arithmetics.
Transactions of the American Mathematical
Society, 98:21-51.

Roger Evans, Gerald Gazdar, and David Weir.
1995. Encoding lexicalized tree adjoining
grammars with a nonmonotonic inheritance
hierarchy. In Proceedings of the 33rd Annual
Meeting of the Association for Computational
Linguisitics (ACL’95), Cambridge, MA.

Ferenc Gécseg and Magnus Steinby. 1984. Tree
Automata. Akadémiai Kiad6, Budapest.

Saul Gorn. 1967. Explicit definitions and lin-
guistic dominoes. In John F. Hart and Satoru
Takasu, editors, Systems and Computer Sci-
ence, Proceedings of the Conference held at
Univ. of Western Ontario, 1965. Univ. of
Toronto Press.

The XTAG Research Group. 1998. A lexi-
calized tree adjoining grammar for english.
Technical Report TRCS-98-18, Institute for
Research in Cognitive Science.

Karin Harbusch, Friedbert Widmann, and
Jens Woch. 1998. Towards a workbench
for schema-TAGs. In Anne Abeillé, Tilman
Becker, Owen Rambow, Giorgio Satta, and
K. Vijay-Shanker, editors, Fourth Interna-

tional Workshop on Tree Adjoining Gram-
mars and Related Frameworks (TAG+4),
pages 58-61.

Aravind K. Joshi and Yves Schabes. 1991.
Fixed and flexible phrase structure: Coordi-
nation in tree adjoining grammars. Presented
at the DARPA Workshop on Spoken Lan-
guage Systems, Feb. Asilomar, CA.

D. Terrence Langendoen. 1976. On the weak
generative capacity of infinite grammars.
CUNYForum, 1:13-24.

Michael O. Rabin. 1969. Decidability of second-
order theories and automata on infinite trees.
Transactions of the American Mathematical
Society, 141:1-35, July.

James Rogers. 1997. A unified notion of de-
rived and derivation structures in TAG. In
Proceedings of the Fifth Meeting on Mathe-
matics of Language MOLS 97, Saarbrucken,
FRG.

James Rogers. 1998a. A descriptive character-
ization of tree-adjoining languages (project
note). In Proc. of the 17th International Con-
ference on Computational Linguistics (COL-
ING’98) and the 36th Annual Meeting of
the Association for Computational Linguis-
tics (ACL’98), Montreal. ACL. Project Note.

James Rogers. 1998b. The descriptive com-
plexity of generalized local sets. In Uwe
Moennich and Hans-Peter Kolb, editors, The
Mathematics of Syntactic Structure. Mou-
ton/deGruyter.

James Rogers. 1998c. On defining TALs with
logical constraints. In Anne Abeillé, Tilman
Becker, Owen Rambow, Giorgio Satta, and
K. Vijay-Shanker, editors, Fourth Interna-
tional Workshop on Tree Adjoining Gram-
mars and Related Frameworks (TAG+/),
pages 151-154.

Anoop Sarkar and Aravind Joshi. 1996. Co-
ordination in TAG: Formalization and im-
plementation. In Proceedings of COLING’96,
Copenhagen.

Martine Smets. 1998. Comparison of XTAG
and LEXSYS grammars. In Anne Abeillé,
Tilman Becker, Owen Rambow, Giorgio
Satta, and K. Vijay-Shanker, editors, Fourth
International Workshop on Tree Adjoin-
ing Grammars and Related Frameworks
(TAG+4), pages 159-163.

J. W. Thatcher and J. B. Wright. 1968. Gen-

eralized finite automata theory with an ap-
plication to a decision problem of second-
order logic. Mathematical Systems Theory,
2(1):57-81.

J. W. Thatcher. 1967. Characterizing deriva-
tion trees of context-free grammars through
a generalization of finite automata theory.
Journal of Computer and System Sciences,
1:317-322.

K. Vijay-Shanker and Yves Schabes. 1992.
Structure sharing in lexicalized tree-adjoining
grammars. In Proceedings COLING’92.

David J. Weir. 1988. Characterizing Mildly
Context-Sensitive Grammar Formalisms.
Ph.D. thesis, University of Pennsylvania.

David J. Weir. 1992. A geometric hierarchy
beyond context-free languages. Theoretical
Computer Science, 104:235-261.

Fei Xia, Martha Palmer, K. Vijay-Shanker,
and Joseph Rosenzweig. 1998. Consistent
grammar development using partial-tree de-
scriptions for lexicalized tree-adjoining gram-
mars. In Anne Abeillé, Tilman Becker,
Owen Rambow, Giorgio Satta, and K. Vijay-
Shanker, editors, Fourth International Work-
shop on Tree Adjoining Grammars and Re-
lated Frameworks (TAG+4), pages 180-183.

