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Definition 1 A finite-state stringset is one in which there is an a
priori bound, independent of the length of the string, on the amount
of information that must be inferred in distinguishing strings in the
set from those not in the set.

Regular = Recognizable = Finite-State
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Cognitive Complexity from First Principles

What kinds of distinctions does a cognitive mechanism need to be
sensitive to in order to classify an event with respect to a pattern?
Slide 3

Reasoning about patterns

e What objects/entities/things are we reasoning about?

e What relationships between them are we reasoning with?

Dual characterizations of complexity classes

Computational classes
e Characterized by abstract computational mechanisms
e Equivalence between mechanisms
Slide 4 e Means to determine structural properties of stringsets
Descriptive classes

e Characterized by the nature of information about the

properties of strings that determine membership
e Independent of mechanisms for recognition

e Subsume wide range of types of patterns
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Some Assumptions about Linguistic Behaviors

e Perceive/process/generate linear sequence of (sub)events

e Can model as strings—linear sequence of abstract symbols
— Discrete linear order (initial segment of N).

— Labeled with alphabet of events
Partitioned into subsets, each the set of positions at
which some event occurs.

Word models
<D7 <]7 <]+a PH><TEZ

T

(+1) <D7<]7 P0'>17€2 (<) <D7<]+7PJ>0€E
D — Finite
<t — Linear order on D
4 — Successor wrt <t
P, — Subset of D at which o occurs

(P, partition D)

COVe = ({0,1,2,3}, {(i,i+1) |0 <i <3}, {0,1,3}c, {2}v )
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Adjacency—Substrings
NN

cvevev
NGNS

Definition 2 (k-Factor)
v s a factor of w if w = wvx for some u,v € X*.

v is a k-factor of w if it is a factor of w and |v| = k.

Fk(w) =

def | {ve YF | (Fu,z € 29w =wvz]} if |w| >k,
{w} otherwise.

F(CVCVCV) = {CV,VC}
F(CVCVCV) = {CVCVCV}

Strictly Local Stringsets—SL

Strictly k-Local Definitions
—GQGrammar is set of permissible k-factors

G C F({x} X" {x})
def

wEGS F(x-w-x)Cg
def
L(G) = {w|w | G}
Definition 3 (Strictly Local Sets) A stringset L over ¥ is
Strictly Local iff there is some strictly k-local definition G over
(for some k) such that L is the set of all strings that satisfy G
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SL Hierarchy

Definition 4 (SL)
A stringset is Strictly k-Local if it is definable with an SLy

definition.
A stringset is Strictly Local (in SL) if it is SLy, for some k.
Theorem 1 (SL-Hierarchy)

SLy C SL3 C -+ C SL; C SLiy -+ C SL

Every Finite stringset is SLy for some k: Fin C SL.

There is no k for which SLj includes all Finite languages.

* CCC is SL;

G-ccc = F3({x} - X" {x}) —{CCC}

s SO A
XCVVCCVx xVCOCCVx

N~ N~

Membership in an SLj, stringset depends only on the individual
k-factors which occur in the string.
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Scanners

a4
X [a]blalbla[bla[bla] > > [alb[a[blalblalb] X

== i

Recognizing an SLj, stringset requires only remembering the k most

recently encountered symbols.

Scanners as FSA
(ay

S
M QS .6 F)
Q def Fro1({x} 2" - {x} UUp<icp 1 [{x} Yy

déaf
d:ef

p
0(o-v,7) v, ce{x}UX, yeXU{x}
podef {v-x|v-xeQ}

9o
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Character of Strictly k-Local Sets

Theorem (Suffix Substitution Closure):
A stringset L is strictly k-local iff whenever there is a string = of
length k£ — 1 and strings w, ¥y, v, and z, such that

k—1
w - "z - y €L
v T -z €L

then it will also be the case that

w - - 2z €L
E.g. But * CCC is not SLo:
v ve - CV exCCC c - C - VC exCcCC
C ve - VC exCCC Vv . C - CV exCCC
vo. ve .- VC exCCC c - C - CV &CCC

Cognitive interpretation of SL

e Any cognitive mechanism that can distinguish member strings
from non-members of an SLj, stringset must be sensitive, at
least, to the length k blocks of events that occur in the

presentation of the string.

e If the strings are presented as sequences of events in time, then
this corresponds to being sensitive, at each point in the string,
to the immediately prior sequence of k — 1 events.

e Any cognitive mechanism that is sensitive only to the length &

blocks of events in the presentation of a string will be able to

recognize only SLj stringsets.
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Cambodian—No light follows another light

Cambodian—Must end on primary stress
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Alawa

Xo | 0| dox

XG | o | X

*NU‘U‘IX

Slide 19
Galawa = { Y00, X06, X0,
- ooo, 006, 060,
XFX, FoX
///’(7
f/’
Arabic (Bani-Hassan)
Xog O',O oo X
X | 0y | X
Slide 20 * X0 ‘ %0 ‘ X

gArabiCBH =

{...}—{o'chK |O’ S 0'0,01702}

10
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Arabic (Cairene)

Xog | 0gog | 09X

X0oo | opog | X

* X0og ‘ 0000 ‘ X

gArabicCai =

{---}—{ooox | o € 09,01,02}

Arabic (Classical)

k—1
—_——
><|0'1 O—O...o'o O'QIX
k—1
P e
Xd | 0g---0¢ | 01X
k—1
—_——
*)40'1 og---0Q O'll><

11
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Strictly Local Stress Patterns

Heinz’s Stress Pattern Database (ca. 2007)—109 patterns

9 are SLo

44 are SLg3

24 are SLy

3 are SLj

1is SLg

28 are not SL

Abun West, Afrikans, ...Cambodian,. ..
Maranungku

Alawa, Arabic (Bani-Hassan),. ..
Arabic (Cairene),. . .

Asheninca, Bhojpuri, Hindi (Fairbanks)
Icua Tupi

Amele, Bhojpuri (Shukla Tiwari), Ara-
bic Classical, Hindi (Keldar), Yidin,. ..

72% are SL, all k < 6. 49% are SLs.

The Problematic Case—Some-&

k—1
S
Xo ag---0 o X
k—1

PR Y
Xoo g---0 o X
k—1
—

*x O ag---0 o X

12
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Locally definable stringsets

FeF(a-n %)  whkf &
QAP wE QAP def

def

- wE—p &

fGFk(Xl-w'lX)
wE ¢ and wE Y
w @

Definition 5 (Locally Testable Sets) A stringset L over X is
Locally Testable iff (by definition) there is some k-expression ¢
over ¥ (for some k) such that L is the set of all strings that satisfy

P def

L=L(p) = {weX [wl ¢}

SL; = /\ [-fi] € LTy

fi€G
Some-o
PSome-5 =
(X6 VFx) Starts or ends with &
N
o Some &

13
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LT Automata

( (
X [albla[blalbla[blal > >\a\b\a\b\a\b\a‘\b\ X

| Boolean
e
| Network

BEEEB
X|o|e o

o
X

E

Membership in an LT} stringset depends only on the set of
k-Factors which occur in the string.

Recognizing an LT} stringset requires only remembering which
k-factors occur in the string.

Character of Locally Testable sets

Theorem 2 (k-Test Invariance) A stringset L is Locally
Testable iff

there is some k such that, for all strings x and vy,
if X-x-X and X -y - X have exactly the same set of k-factors

then either both x and y are members of L or neither is.

w=Fv <d:ef> Fr(xwx) = Fip(xux).

14
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LT Hierarchy

Definition 6 (LT)
A stringset is k-Locally Testable if it is definable with an
LTy -expression.

A stringset is Locally Testable (in LT) if it is LTy for some k.
Theorem 3 (LT-Hierarchy)

LT, QLT3 G- QLT C LTy & -+ C LT

Cognitive interpretation of LT

e Any cognitive mechanism that can distinguish member strings
from non-members of an LTy stringset must be sensitive, at
least, to the set of length k blocks of events that occur in the
presentation of the string—both those that do occur and those
that do not.

e If the strings are presented as sequences of events in time, then
this corresponds to being sensitive, at each point in the string,
to the length & blocks of events that occur at any prior point.

e Any cognitive mechanism that is sensitive only to the set of
length k blocks of events in the presentation of a string will be
able to recognize only LT} stringsets.

15
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Arabic (Classical)

—— L, /"
X0o100:+-000100 000100 09X

FO(+1)
Models: (D, <, Py)oes
First-order Quantification (over positions in the strings)

T4y w, [z —iy—jlEx<y (d:ef) j=1i+1

P, (x) wp—i =P(z) 4L iep,
AP :
2
(3z)[p(2)] w, s = (Jz)[p(2)] el w, sz — 1] | p(z)]

for some i € D
FO(+1)-Definable Stringsets: L(y) def {w|w E ¢}

One-¢ = L((Jz)[o(x) A (Vy)[6(y) — = = y]])
Arabic (Classical) is FO(+1)

16
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Character of the FO(+1) Definable Stringsets

Definition 7 (Locally Threshold Testable) A set L is Locally
Threshold Testable (LTT) iff there is some k and t such that, for
all w,v € ¥*:
if for all f € Fr(x-w-X)U F(x-v-X)
either |w|; = |v|; or both |w|; >t and |v|; > ¢,

thenw e L <— v € L.

Theorem 4 (Thomas) A set of strings is First-order definable
over (D, <, Py)sex iff it is Locally Threshold Testable.

Membership in an FO(+1) definable stringset depends only on the
multiplicity of the k-factors, up to some fixed finite threshold,
which occur in the string.

Cognitive interpretation of FO(+1)

e Any cognitive mechanism that can distinguish member strings
from non-members of an FO(41) stringset must be sensitive, at
least, to the multiplicity of the length & blocks of events, for
some fixed k, that occur in the presentation of the string,
distinguishing multiplicities only up to some fixed threshold ¢.

e If the strings are presented as sequences of events in time, then
this corresponds to being able count up to some fixed threshold.

e Any cognitive mechanism that is sensitive only to the
multiplicity, up to some fixed threshold, (and, in particular, not
to the order) of the length k blocks of events in the presentation
of a string will be able to recognize only FO(+1) stringsets.

17
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Yidin

Exactly one 6 (One-6)

First H gets primary stress
(No-H-before-H)

e o and & alternate ((05)*)

L only if initial
(Nothing-before-L.)

Slide 35

L implies no H
(No-H-with-L)

L must be followed by L
(L-follows-1)

Yidin is not FO(+1)

2kt 2kt 2kt
‘s N . \ N \ s .
xLL---LLHHLL---LLHHLL---LL X
—L
=kt
2kt
N N N ‘s N . N N
*xLL-- - LLHHLL---LLHHLL---LLx
—_—— —_——
2kt 2kt

Slide 36

no-H-before-H is not FO(+1)
One-6 is FO(+1)
e No-H-with-L is LT.

(o&)*, Nothing-before-L, and
L-follows-L, are all SLs.
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Long-Distance Dependencies
Sarcee sibilant harmony:

[-anterior] sibilants do not occur after [+anterior] sibilants
a. /si-tfiz-a?/ —  Jitfidza? ‘my duck’
b. /na-s-yat[/ — mnafyatf ‘I killed them again’
c. cf. xsitfidza?

R R AR
Samala (Chumash) sibilant harmony:
[-anterior] sibilants do not occur in the same word as [+anterior]
sibilants

[Jtojonowonowaf] ‘it stood upright’ *[Jtojonowonowas]

-5 H 5+ (5[ 5[5

Complexity of Sibilant Harmony

(Samala and Sarcee)

Symmetric sibilant harmony is LT
~(+IA =D

Asymmetric sibilant harmony is not FO(+1)

Xw [—] w [+] wix
_L
—kyt

* Xw [—]w [+] w [-] wx

19
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Precedence—Subsequences

Definition 8 (Subsequences)

de
vgw<:f>vzal~-~an andw € X* 01 - X% - X* -0, - 2F

Py (w) d:ef{v exk|vCw}

Poj(w) d:ef{v e X<k v Cw}

o0 6000

\NANANAN  00,00,50,00, 00
~>~o~o ~ 06,00,00
~~>_— ~ 00,00, 60
~~~___— — 00,00
-~ _— g0

Py(oo6050) = {o0,06,05,60,60,50}

P.y(0o6060) ={e,0,6,5,00,06,05,60,60,50}

Strictly Piecewise Stringsets—SP

Strictly k-Piecewise Definitions

G C usk
w }: g <d:ef> ng(w) - ng(g)

16) ¥ wes |wieg)

Onotibetore i = VHH, HH,HH,HH,HH,HH,...}

7 />k\/
LLHLHL LLHLHL
N ANNAN
~s
~—

—
-

Membership in an SPy stringset depends only on the individual
(< k)-subsequences which do and do not occur in the string.

20
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Character of the Strictly k-Piecewise Sets

Theorem 5 A stringset L is Strictly k-Piecewise Testable iff, for
all w e ¥*,

Consequences:

Subsequence Closure: wov € L = wv € L
Unit Strings: P(L)CL
Empty String: L#£D)=c€lL
Every naturally occurring stress pattern requires Primary Stress

=
No naturally occurring stress pattern is SP.

But SP can forbid multiple primary stress: =64

SP Hierarchy

Definition 9 (SP)

A stringset is Strictly k-Piecewise if it is definable with an SPy
definition.

A stringset is Strictly Piecewise (in SP) if it is SPy for some k.
Theorem 6 (SP-Hierarchy)

SPy C SPsC---C SP,C SPiy1 C---C SP
SP is incomparable (wrt subset) with the Local Hierarchy
SP, Z FO(+1) No-H-before-H € SP; — FO(+1)
SLy Z SP (00)* € SLy —SP

SP> N SLy 75 0 A*B* ¢ SP>; N SL,
Fin ¢ SP {A} € Fin—SP

21
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Sarcee Sibilant Harmony is SP,

{n H L HHH L3

Yidin constraints wrt SP

e No-H-before-H is SPy:
Forbid HH

Forbid L
e One-¢ is not SP:
*x coo C odoo
e (05)* is not SP:
*x coo C oooo
e L-follows-L is not SP:
* LL C LLL

° Nothing—before—ﬁ is SPy:

22
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Cognitive interpretation of SP

e Any cognitive mechanism that can distinguish member strings
from non-members of an SP, stringset must be sensitive, at
least, to the length k (not necessarily consecutive) sequences of

events that occur in the presentation of the string.

e If the strings are presented as sequences of events in time, then
this corresponds to being sensitive, at each point in the string,
to up to k — 1 events distributed arbitrarily among the prior

events.

e Any cognitive mechanism that is sensitive only to the length k
sequences of events in the presentation of a string will be able

to recognize only SPy stringsets.

k-Piecewise Testable Stringsets

PTy-expressions

p e xSk wkEp et pCw
Ay  wEEAY g wE ¢ and w E Y
def
—p wE-p & wite

k-Piecewise Testable Languages (PTy):

L) ©iwe v jw = ¢}

One-6 = L(6 A —66)

Membership in an PT}y stringset depends only on the set of

(< k)-subsequences which occur in the string.

SPy, is equivalent to A, o [—pi]

23
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Character of Piecewise Testable sets
Theorem 7 (k-Subsequence Invariance) A stringset L is
Piecewise Testable iff
there is some k such that, for all strings x and vy,
if © and y have exactly the same set of (< k)-subsequences

then either both x and y are members of L or neither is.

w=F v g P (w) = P<i(v).

Yidin constraints wrt PT

e No-H-before-H is SPy:
Forbid HH

° Nothing-before—ﬁ is SPy:
Forbid ©L

e One-6 is PTy:
Require 4, Forbid 65

e (00)* is not PT:
2k 2k
’_/h /_/A

ov-05 =k oo 0005

e L-follows-L is not PT:
2k 2k
—_—~ —_———

LLLL.- - LL=P LLLL .- LL

24
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PT Hierarchy

Definition 10 (SP)
A stringset is k-Piecewise Testable if it is definable with an PTy
Slide 49 definition.

A stringset is Piecewise Testable (in PT) if it is PTy for some k.
Theorem 8 (PT-Hierarchy)

PI, S PT3 C---CPT; C PTipa & -+ C PT

PT, SP and the Local Hierarchy

SPi C PTy
SPry1 € PTy
PT, ¢ SP One-H € PT, —SP
PTy ¢ FO(+1) No-H-before-H € PTy — FO(+1)

Slide 50 SL, Z PT (J@r)* € SL, — PT
PTynN SL2 # 0 A*B* ¢ PTynN SLQ
Fin C SP:
St =Le), 0=L(~e), {e}=L() o)),
ceY
{wy=Lwnr N [
peXlwl+1
{wi,...,way =L \/ [win N\ [0l
1<i<n

p€E|wi|+1
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Cognitive interpretation of PT

e Any cognitive mechanism that can distinguish member strings
from non-members of an PT}, stringset must be sensitive, at
least, to the set of length k subsequences of events that occur
in the presentation of the string—both those that do occur and
those that do not.

e If the strings are presented as sequences of events in time, then
this corresponds to being sensitive, at each point in the string,
to the set of all length & subsequences of the sequence of prior

events.

e Any cognitive mechanism that is sensitive only to the set of
length k subsequences of events in the presentation of a string
will be able to recognize only PTj stringsets.

First-Order(<) definable stringsets

<D7<]+aPa'>O'EE

First-order Quantification over positions in the strings

z<ty  wr—iy—jlErzaty <d:ef> 1< ]

P, (z) w e il Pyx) 4L iep,
oA :
P
(F2)[ip ()] w, s = (3z)[p(2)] &l oy, slz —i] | o(z)]

for some i € D

26
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PT, FO(+1) and FO(<)
Theorem 9 PT C FO(<).

o1on Cwe Qay,zn)| N [t i N [Py (@) ]

1<i<j<n 1<i<n
(c0)* CFO(<)—PT
Theorem 10 FO(+1) C FO(<).
+1 is FO definable from <:
rdy=x <t yA=(32) [z <t 2 Az <t y)

No-H-before-H C FO(<) —FO(+1)

Star-Free stringsets

Definition 11 (Star-Free Set) The class of Star-Free Sets (SF)
1s the smallest class of languages satisfying:

e Fin C SF.

e [fLi,Ly € SF then: Ly-Ly € SF,
L, UL,y € SF,
L, € SF.

Theorem 11 (McNauthton and Papert) A set of strings is
First-order definable over (D, <V, Py)gex iff it is Star-Free.

27
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PT and LT with Order

per) w|:gpo1/)<d:ef>w:w1-w2, wy = ¢ and wy = 9.
LTOy is LTy plus p e ¢

No-H-before-H = L((—~H) o (=H)) € LTO

PTOy is PTy plus p e

Let:
pa=i = AN N\pesina [0, pme =¢
L(pa=i) = {A"} L(ps~) = X*
Then:
(00)" = L(—(ps=1 @ ps=) A (5~ ® pp=1)A

(s @ Po=2 @ P52 ) A (px- @ py=2 # px-)) € PTO

PTO, LTO and SF

Theorem 12
PTO=SF=LTO

SF C PTO, SF C LTO

Fin C PTO, Fin C LTO and both are closed under concatenation,

union and complement.

LTO C PTO C SF

Concatenation is FO(<) definable.

28
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Yidin is FO(<)

e No-H-before-H is SP:
Forbid HH
. Nothing—before-l’, is SPy:
Forbid %L
e One-6 is PT5:
Require 4, Forbid 66
e (00)* is SLo:
{0, 00, 5o, 5x}
o L-follows-L is SLs:
(L. LI, LF bE, L)
Yidin is SLo N PTs.
Yidin is LT9 N SPs.

Character of FO(<) definable sets

Theorem 13 (McNaughton and Papert) A stringset L is
definable by a set of First-Order formulae over strings iff it is
recognized by a finite-state automaton that is non-counting (that

has an aperiodic syntactic monoid), that is, iff:
there exists some n > 0 such that
for all strings u,v,w over %
if uwv™w occurs in L

then wv™w, for all i > 1, occurs in L as well.

E.g.
{people (who were left by people)” left} € L

{people (who were left by people)" ™" left} < L

29
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Cognitive interpretation of FO(<)

e Any cognitive mechanism that can distinguish member strings
from non-members of an FO(<) stringset must be sensitive, at
least, to the sets of length k blocks of events, for some fixed k,
that occur in the presentation of the string when it is factored
into segments, up to some fixed number, on the basis of those
sets with distinct criteria applying to each segment.

e If the strings are presented as sequences of events in time, then
this corresponds to being able to count up to some fixed
threshold with the counters being reset some fixed number of
times based on those counts.

e Any cognitive mechanism that is sensitive only to the sets of
length k blocks of events in the presentation of a string once it
has been factored in this way will be able to recognize only
FO(<) stringsets.

MSO definable stringsets
<D7 <, <]+7 PG'>O'€Z
First-order Quantification (positions)

Monadic Second-order Quantification (sets of positions)

<t is MSO-definable from <.

30
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MSO example

(3Xo, X1)[ (Vo) [Fy)ly < 2] v Xo(x)] A

(
(Vz, y)[~(Xo(z) A X1 (2))] A
(Vz,y)[z 9y — (Xo(z) < X1(y)] A
(V) [(Fy) [z < y] V X1 ()] ]

a b b a b a

Xo Xo Xo
X1 X1 X1

Theorem 14 (Chomsky Schiitzenberger) A set of strings is
Regular iff it is a homomorphic image of a Strictly 2-Local set.

Definition 12 (Nerode Equivalence) Tuwo strings w and v are
Nerode Equivalent with respect to a stringset L over ¥ (denoted
w =g v) iff for all strings u over ¥, wu € L < vu € L.

Theorem 15 (Myhill-Nerode) A stringset L is recognizable by a
FSA (over strings) iff =1, partitions the set of all strings over X
into finitely many equivalence classes.

Theorem 16 (Medvedev, Biichi, Elgot) A set of strings is
MSO-definable over (D, <, <, P,)yex iff it is reqular.

Theorem 17 MSO = 3IMSO over strings.

31
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Cognitive interpretation of Finite-state

e Any cognitive mechanism that can distinguish member strings
from non-members of a finite-state stringset must be capable of
classifying the events in the input into a finite set of abstract
categories and are sensitive to the sequence of those categories.

e Subsumes any recognition mechanism in which the amount of
information inferred or retained is limited by a fixed finite
bound.

e Any cognitive mechanism that has a fixed finite bound on the
amount of information inferred or retained in processing
sequences of events will be able to recognize only finite-state
stringsets.

Hindi (Kelkar)

32
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Local and Piecewise Hierarchies

Reg MSO
SF
FO
LTT
LT n? PT Prop
s N7/ sp
+1 <
Fin

Complexity of some phonological constraints

MSO Hindi (Kellkar)?
(Reg)
FO(<) (Yidin)
(SF)
FO(+1) | ?
LT PT
LT, Some-J,
Symmetric SH LT, NPT, | Yidin PTsy | One-¢
SL SP
SL¢ 2%
SLy Arabic (Cariene)
SL3 *CCC,
Alawa,
Arabic (Bani-Hassan),
49%
SLy Cambodian SP, | Asymmetric SH,

No—H—before—H,
Nothing-before-1,

33
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n-gram Models of Language

Prr(oy---0,) =Prp(or | %) - H [Prr(o; | o —1)] - Prp(x | oy)
1<i<n

Fi(w) f

F,f”(w)dzef{{vezk\wEZ*w-Z*}

Prp(w) = H [Prr(o | v)]

v-o€FM(x-w-x)

et |lwex v 2}

Strictly k-Local Languages (SLg)

T oo € Fu(x -5 %) | 3(0,0)1}

L € SL;, (d:ef> L is L(M) for some k-scanner M

e st £ @)L e suy)
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Subsequences

v is a subsequence of w:

vgwgvzol-~-ak andweX* o - 2% X0, - 2F
def def
Pe(w) E {fvest [vCw}  Pow) = | [P(w)]

0<i<k
P (w) % o C w}

Would like:
Prp(w) = H [Prr(o | v)]

v-o€PX (w)

Initial Model

Q =P(P<k(X7))
Let w=wv-0-u, ¢=06{c},v):

T(q,0) =Prp(o | P<x(v) =q)
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PT-Automata

Piecewise-Testable Languages (PT)

ST(w) ' (v e 5% | w T 0)

L is Piecewise Testable g L is a finite Boolean combination of
principal shuffle ideals.

Pr-expressions

Atoms v € P<; (%)

wEv <d:ef> w € SI(v) (e, v Cw)

Operators Truth functional connectives

LePTy < L={weX"|wk ¢} for some Py-expression ¢
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PT-Automata and P,-expressions

/' a

Fp={g € P(P<k(EM)) | (A[s]A A\ [Fs]) — )

s€q s¢q

LMy) ={w e X" [w = ¢}

Strictly Piecewise Testable Languages (SP)

The following are equivalent:
1. LeSP

2. L is the set of strings satisfying a finite conjunction of negative
Py-literals.

L = ,es[SI(w)], S finite,
(E”{I)[ng(w) - ng(L) = w e L],

we LandvC v € L (L is subsequence closed),

w =
L =SI(X), X C¥* (L is the complement of a shuffle ideal).

& o w
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DFA representation of SP; languages

Let M be a trimmed minimal DFA recognizing an SPj language.
Then:

1. All states of M are accepting states.
2. If §(g, o)1 then there is some s € P<j,({w | d(qo,w) = q}) such
that for all ¢’ € Q s € P<x({w | 6(g0,w) = ¢'}) = 5(g,0)1

Consequently, for all ¢1,¢2 € Q and 0 € ¥, if 6(q1,0)T and

0(q1, w) = q2 for some w € * then 6(gz,0)7.
(Missing edges propagate down.)

SPi-automata

Q = P(P<-1(X7))

Size of automaton: @(2card(z)k)
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Factored SP,-automata

SI(aa)

-

A0
7

SI(bc)

105
SOt
J

SP-PDFA

-

Ak

RO OO0
f
/
f

JOE02
PP
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Product PDFAs

Co-emission Probability
CT(<07 qi ... q71/>) = H?:lTi(qia J)
CF((q1-.-qn)) = i Fia:)
Z({q1 ) = CF({g1---qn) + > CT((0,q1 -+ - )

Product PDFAs—k-sets

Positive Co-emission Probability

PCT((0,qc...qu)) = T (Gw, o)

quw€(qe---qu)
qu=w

PCF((ge...q)) = [ Folqw)

quw€(Ge---qu)

Z((q1- . qn)) = PCF((q1...qn)) + Y_PCT(({o,q1-..qn))
ocx
Let ¢ = (¢, ¢€,b,aa,a,ba,b):
CT(a,q) = Tc(e,a) Ty(e a) Ty, a)-

Tualaa,a) - Typ(a, a) - Tya(ba, a) - Tpy(b, a)
PCT(G, Q) = TE(67 (L) : Tb(ba a) : Taa(aav a) : Tba(baa a)
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Complexity

Number of automata:
Z [card(X)!] = O(card(XZ)F 1)
0<i<k
Number of states:
> [(i+1) card(X)'] = O(k card(X)F )
0<i<k

ML estimation n =} [|w|]—size of corpus
O(ncard(X)* 1) (v.s. ©(n))

Prp(w)
O(ncard(X)* 1) (v.s. ©(n))

Parameters Only final states matter

card(X)O(card(X)* 1) = O(card (%)) (Same)

Remaining issues

e Estimation undercounts
— counts number of k-sequences that start with first
prefix—0O(n)
n
— actual number <k> € O(2").

e Want probability to depend on multiset of subsequences
— infinitely many states

— but probability of n occurrences is
(probability of occurrence)”

— same number of parameters/still linear time

e Not Regular distribution

— Not clear that there is a corresponding class of distributions

over strings
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Summary

SP-Distributions

e Regular distribution

Model (some) long distance dependencies

e Asymptotic complexity same as SL-distributions (n-gram
models)

e SL-distributions can’t model long distance dependencies
SP-distributions can’t model local ones

e Both are classes of Regular distributions
Combination is straightforward

Samala Corpus

e 4800 words drawn from Applegate 2007, generously provided in
electronic form by Applegate (p.c).

35 Consonants

H labial ‘ coronal ‘ a.palatal ’ velar | uvular | glottal‘

stop p p? ph t t? th k k? kh q q? qh ?

affricates fs ts° ts" E] a? ah

fricatives ss s I xx' h

nasal m nn'

lateral 117

approx. w y

6 Vowels
i i u

e o (Applegate 1972, 2007)
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Samala: results of SP2 estimation

X
Pa | {y} <) q [ o .
tf 0.0313 | 0.0455 || 0. 0.0006
y J 0.0353 | 0.0671 || 0. 0.0009
ts 0. 0.0009 || 0.0113 | 0.0218
s 0.0002 | 0.0011 || 0.0051 | 0.0335

(Collapsing laryngeal distinctions)

Finnish: Corpus

e 44,040 words from Goldsmith and Riggle (to appear)

19 Consonants

H lab. | lab.dental | cor. ‘ pal. | velar | uvular ‘ glottal |

stop pb

td

C

kg

q

fricatives

fv

X

nasal m

lateral

rhotic

approx. w

8 Vowels

-back | +back

i y u

(S} oe o

ae a

Back vowels and front vowels don’t mix
(except for [i,e], which are transparent).
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Results of SP2 Estimation

PO <) |
i e y oe ae u o a
i 0.092  0.08 0.012 0.006 0.026 | 0.033 0.033 0.099
e 0.094 0.073 | 0.014 0.005 0.032 | 0.035 0.028 0.082
y 0.092 0.071 | 0.047 0.03 0.066 | 0.015 0.017 0.039
c | oe 0.097 0.067 | 0.029 0.014 0.053 | 0.023 0.026 0.059
ae 0.095 0.077 | 0.038 0.015 0.09 0.015 0.015 0.036
u 0.086  0.07 0.006 0.002 0.007 | 0.059 0.045 0.12
o 0.111  0.071 | 0.005 0.002 0.007 | 0.047 0.034 0.121
a 0.099 0.063 | 0.005 0.002 0.007 | 0.049 0.035 0.134
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