
UCLA MathLing 1

Slide 1

On Formalizing Syntax
James Rogers

Dept. of Computer Science, Earlham College
jrogers@cs.earlham.edu

Slide 2

Formalization of Syntax

Actual Lingusitic Structures?

(Lingusitic)Natural
Language Theory of Syntax

FLT

Mathematical Objects

Language

Grammar
Generative

Automata
Mathematical

Strings/Trees/. . .

as a Set of

UCLA MathLing 2

Slide 3

Formalization of Syntax

Actual Lingusitic Structures?

Natural
Language

(Lingusitic)
Theory of Syntax

FLT

Mathematical Objects Grammar

Mathematical
Automata

Logical
Axioms

Language

Generative

Strings/Trees/. . .

as a Set of

Model-Theoretic
Satisfaction

Consequence
Logical

Formal

(Logical Formulae)
Theory of Syntax

Slide 4

Formalization of Syntax

Actual Lingusitic Structures?

Theory of Syntax

Natural
Language

(Lingusitic)

FLT

Language

Automata

Logical
Axioms

Mathematical

Mathematical Objects
Strings/Trees/. . .

as a Set of Generative
Grammar

FMT
Satisfaction

Model-Theoretic Consequence
Logical

Formal

(Logical Formulae)
Theory of Syntax

UCLA MathLing 3

Slide 5

Word Models

(<) 〈D, ⊳, ⊳+, Pσ〉σ∈Σ (+1) 〈D, ⊳, Pσ〉σ∈Σ

D — Finite

⊳+ — Linear order on D

⊳ — Successor wrt ⊳+

Pσ — Partition D

w ∈ Σ∗ ≡ 〈Dw, (⊳)w, (⊳+)w, Pwσ 〉σ∈Σ

Dw
def
= {i | 0 ≤ i < |w|}

(⊳)w
def
= {〈i, i+ 1〉 | 0 ≤ i < |w| − 1}

(⊳+)w
def
= {〈i, j〉 | 0 ≤ i < j < |w|}

Pwσ
def
= {i | w = u · σ · v, |u| = i}

A · B
def
= 〈DA ⊎ DB, (⊳)A·B, (⊳+)A ∪ (⊳+)B ∪ (DA ×DB), PAσ ⊎ P

B
σ 〉

Slide 6

k-grams

k-factors

Fk(w)
def
=







{w}, if |w| < k

{y | w = x · y · z, |y| = k}, otherwise.

Fk(L)
def
= {Fk(w) | w ∈ L}

Strictly k-Local Definitions

G ⊆ Fk({⋊} · Σ
∗ · {⋉})

w |= G
def
⇐⇒ Fk(⋊ · w ·⋉) ⊆ G

L(G)
def
= {w | w |= G}

UCLA MathLing 4

Slide 7

Scanners

QD

a b a b a b a b a babababa

a

a

∈
φ

a

b

b

· · ·

· · ·

· · ·

· · ·

· · ·

k

a · · · b· · ·
k k

b

G :

Slide 8

Strictly Local Generation

TheAlice

Alice likes dogThe

likes sleptdogthe

the sleptdog

dog

⋊ Alice likes the dog ⋉ ⋊ the dog slept ⋉

the

biscuit likes

⋉Alice

Bob slept

thelikes

⋊

dog slept

Boblikes

biscuit slept

Alicelikes

the biscuit

⋊

the dog

Bob⋊

Alice⋊ Alice likes

⋉biscuit

Alice slept ⋉slept

⋊

Bob likes

⋉dogdog likes

⋉Bob

⋉

⋉

UCLA MathLing 5

Slide 9

Character of Strictly 2-Local Sets

Theorem (Suffix Substitution Closure):

A stringset L is strictly 2-local iff whenever there is a word x and

strings w, y, v, and z, such that

w · x · y ∈ L

v · x · z ∈ L

then it will also be the case that

w · x · z ∈ L

Example:

The dog · likes · the biscuit ∈ L

Alice · likes · Bob ∈ L

The dog · likes · Bob ∈ L

Slide 10

Character of (General) Strictly Local Sets

Theorem (General Suffix Substitution Closure):

a stringset l is Strictly Local iff there is some k such that whenever

there is a string x of length k − 1 and strings w, y, v, and z, such

that

w · x · y ∈ L

v · x · z ∈ L

then it will also be the case that

w · x · z ∈ L

UCLA MathLing 6

Slide 11

k-Expressions

f ∈ Fk(⋊ · Σ
∗⋉) w |= f

def
⇐⇒ f ∈ Fk(⋊ · w ·⋉)

ϕ ∧ ψ w |= ϕ ∧ ψ
def
⇐⇒ w |= ϕ and w |= ψ

¬ϕ w |= ¬ϕ
def
⇐⇒ w 6|= ϕ

Locally k-Testable Languages (LTk):

L(ϕ)
def
= {w | w |= ϕ}

SLk ≡
∧

fi 6∈G

[¬fi] (LTk

Slide 12

LT Automata

a

b

ba

b a

b b

a

b

aa

φ

Boolean
Network

a b a b a b a b a babababa

a a b b

UCLA MathLing 7

Slide 13

Character of Locally Testable Sets

Locally Testable Sets

A stringset L over Σ is Locally Testable iff (by definition) there is

some k-expression ϕ over Σ (for some k) such that L is the set of

all strings that satisfy ϕ.

Lϕ = {x ∈ Σ∗ | x |= ϕ}

Theorem (k-Test Invariance):

A stringset L is Locally Testable iff

there is some k such that, for all strings x and y,

if ⋊ · x ·⋉ and ⋊ · y ·⋉ have exactly the same set of k-factors

then either both x and y are members of L or neither is.

Slide 14

FO(<) (Strings)

〈D, ⊳, ⊳+, Pσ〉σ∈Σ

First-order Quantification over positions in the strings

x ⊳ y w, [x 7→ i, y 7→ j] |= x ⊳ y
def
⇐⇒ j = i+ 1

x ⊳+ y w, [x 7→ i, y 7→ j] |= x ⊳+ y
def
⇐⇒ i < j

Pσ(x) w, [x 7→ i] |= Pσ(x)
def
⇐⇒ i ∈ Pσ

ϕ ∧ ψ
...

¬ϕ
...

(∃x)[ϕ(x)] w, s |= (∃x)[ϕ(x)]
def
⇐⇒ w, s[x 7→ i] |= ϕ(x)]

for some i ∈ D

UCLA MathLing 8

Slide 15

Locally Testable with Order (LTOk)

LTk plus

ϕ • ψ w |= ϕ • ψ
def
⇐⇒ w = w1 · w2, w1 |= ϕ and w2 |= ψ.

Definition 1 (Star-Free Set) The class of Star-Free Sets (SF)

is the smallest class of languages satisfying:

• ∅ ∈ SF, {ε} ∈ SF, and {σ} ∈ SF for each σ ∈ Σ.

• If L1, L2 ∈ SF then: L1 · L2 ∈ SF,

L1 ∪ L2 ∈ SF,

L1 ∈ SF.

Theorem 1 (McNauthton and Papert) A set of strings is

k-Locally Testable with Order (LTOk) iff it is Star-Free.

Slide 16

FO(<) over Strings and LTO

w |= ab ⇔ w |= (∃x, y)[x ⊳ y ∧ Pa(x) ∧ Pb(y)]

w |= ϕ • ψ ⇔ w |= (∃x)[ϕ<x(x) ∧ ψ≥x(x)]

w |= Pσ(max) ⇔ w |= σ⋉

w |= max ≈ max ⇔ w |= f ∨ ¬f

w |= max ≈ min ⇔ w |=
∨

σ∈Σ[⋊σ⋉]

w |= (∃x)[ϕ(x)] ⇔ w |= (∃x)[
∨

〈ϕi,ψi〉∈Sϕ
[ϕ<xi (x) ∧ ψ≥xi (x)]]

Sϕ finite, qr(ϕi), qr(ψi) < qr((∃x)[ϕ(x)]).

Theorem 2 (McNauthton and Papert) A set of strings is

First-order definable over 〈D, ⊳, ⊳+, Pσ〉σ∈Σ iff it is Star-Free.

UCLA MathLing 9

Slide 17

Character of First-Order Definable Sets

Theorem (McNaughton and Papert):

A stringset L is Star-Free iff it is recognized by a finite-state

automaton that is non-counting (that has an aperiodic syntactic

monoid), that is, iff:

there exists some n > 0 such that

for all strings u, v, w over Σ

if uvnw occurs in L

then uvn+iw, for all i ≥ 1, occurs in L as well.

E.g. (n = 2)

my
︷ ︸︸ ︷

father’s
︷ ︸︸ ︷

father’s father resembled my father ∈ L

my
︷ ︸︸ ︷

father’s
︷ ︸︸ ︷

father’s

≥1
︷ ︸︸ ︷

(father’s) father resembled my father ∈ L

Slide 18

FO(+1) (Strings)

〈D, ⊳, Pσ〉σ∈Σ

First-order Quantification (over positions in the strings)

Theorem 3 (Thomas) A set of strings is First-order definable

over 〈D, ⊳+, Pσ〉σ∈Σ iff it is Locally Threshold Testable.

Definition 2 (Locally Threshold Testable) A set L is Locally

Threshold Testable (LTT) iff there is some k and t such that, for

all w, v ∈ Σ∗:

if for all f ∈ Fk(⋊ · w ·⋉) ∪ Fk(⋊ · v ·⋉)

either |w|f = |v|f or both |w|f ≥ t and |v|f ≥ t,

then w ∈ L ⇐⇒ v ∈ L.

UCLA MathLing 10

Slide 19

MSO (Strings)

〈D, ⊳, ⊳+, Pσ〉σ∈Σ

First-order Quantification (positions)

Monadic Second-order Quantification (sets of positions)

⊳+ is MSO-definable from ⊳.

Slide 20

MSO Example

(∃X0, X1)[(∀x, y)[(X0(x) ∧ x ⊳ y)→ X0(y)] ∧

(∀x)[C(x)→ X0(x)] ∧ (∃x)[X0(x) ∧B(x)] ∧

(∀x, y)[(X1(x) ∧ x ⊳ y)→ X1(y)] ∧

(∀x)[B(x)→ X0(x)] ∧ ¬(∃x)[A(x) ∧X1]]

a c a

X0

b

X0

X1

b

X0

X1

c

X0

X1

b

X0

X1

X0

UCLA MathLing 11

Slide 21

Automata for MSO

a c a

X0

b

X0

X1

b

X0

X1

c

X0

X1

b

X0

X1

X0

0 − ∅

1 − {X0}

2 − {X1}

3 − {X0, X1}

a

0

c

0 1

3

0 0

a

1

a

1

1 3
b

0

b

2

1

c

0 1

c

1 1

c

0

a

b

2 2

b

2

2

c

3

2

a

f

3

b

3

c

3

3

a

f

0

b

1

b

0

a

3

b

3

c

2

b

1 1

a

1
c

1 3

b

b

33
3

c

3
b

3⋊

⋊

⋊

⋊ ⋉

⋉

⋉

⋉

⋉

⋉

⋊
⋉

Slide 22

Theorem 4 (Chomsky Shützenberger) A set of strings is

Regular iff it is a homomorphic image of a Strictly 2-Local set.

Definition (Nerode Equivalence): Two strings w and v are

Nerode Equivalent with respect to a stringset L over Σ (denoted

w ≡L v) iff for all strings u over Σ, wu ∈ L⇔ vu ∈ L.

Theorem 5 (Myhill-Nerode) : A stringset L is recognizable by

a FSA (over strings) iff ≡L partitions the set of all strings over Σ

into finitely many equivalence classes.

Theorem 6 (Büchi, Elgot) A set of strings is MSO-definable

over 〈D, ⊳, ⊳+, Pσ〉σ∈Σ iff it is regular.

Theorem 7 MSO = ∃MSO over strings.

SL � FO(+) = LTT � FO(<) = SF � MSO = Reg. (strings)

UCLA MathLing 12

Slide 23

Modal Logics—Strings—Lword

〈T, ⊳, ⊳+, Pσ〉σ∈Σ as Frame and Valuation

Lword ϕ : P, ⊤, ¬ϕ, ϕ ∧ ψ, 〈→〉ϕ, 〈←〉ϕ

L(ϕ)
def
= {T | ∀(t ∈ T)[T , t |= ϕ]}

L(ϕ ∨ ψ) 6= L(ϕ) ∪ L(ψ).

Lword = SL (strings)

Slide 24

Modal Logics—Strings—Adding →∗

L→
∗ ϕ : P, ⊤, ¬ϕ, ϕ ∧ ψ, 〈→〉ϕ, 〈→∗〉ϕ

T , t |= 〈→〉ϕ
def
⇐⇒ (∃t′)[〈t, t′〉 ∈ T ⊳ and T , t′ |= ϕ]

T , t |= 〈→∗〉ϕ
def
⇐⇒ (∃t′)[(t′ ≈ t or 〈t, t′〉 ∈ T ⊳

+

) and T , t′ |= ϕ]

L(ϕ)
def
= {T | T , ε |= ϕ}

Lword = SL � LT � L→∗ � FO(<) (strings)

UCLA MathLing 13

Slide 25

Modal Logics—Strings—PTL

Luntil ϕ : P, ⊤, ¬ϕ, ϕ ∧ ψ, 〈→〉ϕ, 〈→∗〉ϕ, U(ϕ, ψ)

T , t |= U(ϕ, ψ)
def
⇐⇒ (∃t′)[t ⊳∗ t′ and T , t′ |= ϕ and

(∀s)[t ⊳∗ s ⊳∗ t′ ⇒ T , s |= ψ]]

Lword = SL � L→∗ � Luntil = FO(<) = SF (strings)

Slide 26

Modal Logics—Strings—PDL

Lpdl ϕ : P, ⊤, ¬ϕ, ϕ ∧ ψ, 〈π〉ϕ

π : →, ?ϕ, π1;π2, π1 ∪ π2, π
∗

T , t |= 〈π〉ϕ
def
⇐⇒ (∃t′)[〈t, t′〉 ∈ RTπ and T , t′ |= ϕ]

RT→
def
= ⊳T RT?ϕ

def
= {〈t, t〉 | T , t |= ϕ}

RTπ1;π2

def
= RTπ1

◦RTπ2
RTπ1∪π2

def
= RTπ1

∪RTπ2

Lword = SL � L→∗ � Luntil = FO(<) � Lpdl = MSO = Reg. (strings)

UCLA MathLing 14

Slide 27

Tree Models

〈T, ⊳1, ⊳
+
1 , ⊳2, ⊳

+
2 , Pσ〉σ∈Σ

T ⊆ — Finite Tree domain

⊳1 — Immediate left-of (global)

⊳+
1 — Left-of (global)

⊳2 — Immediate domination

⊳+
2 — Proper domination

Pσ — Partition D 〈2, 0〉

ε

〈0〉 〈1〉 〈2〉

〈1, 0〉 〈1, 1〉

Σ-labeled Tree:

T = 〈T, τ 〉, τ : T → Σ = {x 7→ σ | x ∈ Pσ}

Slide 28

Local Tree Grammars

A

A A

A

A

A B

A A

B A

B

A A

A

BA

A

AB

A

A A

A Local Tree Grammar G over Σ is a finite set of local (height ≤ 1)

Σ-labeled trees.

The set of Σ-labeled trees licensed by G relative to some set of start

labels S ⊆ Σ is: G(S)
def
= {T | LT(T) ⊆ G, τ (ε) ∈ S}

LTG ≤ FO(⊳+
2)

UCLA MathLing 15

Slide 29

Subtree Substitution Closure

,

γ

T1

T2

γ

T1

T4

γ

T3

T4

∈ T ⇒ ∈ T

Theorem 8 A set of labeled trees is Local iff it is closed under

substitution of subtrees rooted at similarly labeled points.

Slide 30

Tree Automata

A Tree Automaton over alphabet Σ and state set Q is a finite set

A ⊆ Σ× LT(TQ).

0
1

1
0

0
1 0 0

0
0

A

A
A

A
B A A

A
A

A

B

1

A

0

B

A

A

0

1

1

0 1

1

0
0

0 0

1

OneB: A({1}) = {T ∈ T{A,B} | |T |B = 1}

LTG � FO(⊳+
2)

UCLA MathLing 16

Slide 31

Tree Automata

0

0 0
A

1

0 1
A

1

1 0
A

0

1 1
A

0

A

1

1 1
B

1

B

1

0 0
B

0

0 1
B

0

1 0
B

0

1
1

0
1 1 1

0
0

A

A
B

A
B B B

A
A

EvenB: A({0}) = {T ∈ T{A,B} | |T |B ≡ 0 (mod 2)}

LTG � FO(⊳+
2) � Reg (trees)

Slide 32

A Myhill-Nerode Characterization

Theorem 9 Suppose T ⊆ TΣ. For all T1, T2 ∈ TΣ, let T1 ≡T T2 iff,

for every tree T ∈ TΣ and point s in the domain of T , the result of

substituting T1 at s in T is in T iff the result of substituting T2 is:

T
s
← T1 ∈ T ⇐⇒ T

s
← T2 ∈ T.

Then T is recognizable iff ≡T has finite index.

UCLA MathLing 17

Slide 33

FO, MSO—Trees

Theorem 10 (Thatcher) A set of Σ-labeled trees is recognizable

iff it is a projection of a local set of trees.

Theorem 11 (Thatcher and Wright, Doner) A set of

Σ-labeled trees is definable in MSO over trees iff it is recognizable.

LTG � FO(⊳+
2) � MSO(⊳+

2) = Reg (trees)

Theorem 12 (Thatcher) A set of strings L is the yield of a local

set of trees (equivalently, is the yield of a recognizable set of trees)

iff it is Context-Free.

Corollary 1 A set of strings L is the yield of a MSO (or FO)

definable set of trees iff it is Context-Free.

Slide 34

Parsing Model-Theoretic Grammars

Parsing string grammars

L(ϕ) = {w | w |= ϕ}

Parsing = satisfaction (model checking)

Parsing tree grammars

L(ϕ) = {Yield(T) | T |= ϕ}

Let: ψw
def
= “yield of T is w”.

Then: {T | T |= ψw ∧ ϕ} = parse forest for w.

Recognition = satisfiability of ψw ∧ ϕ

UCLA MathLing 18

Slide 35

FO—Trees

FO(+1): 〈T, ⊳1, ⊳
+
1 , ⊳2, Pσ〉σ∈Σ

Theorem 13 (Benedikt and Segoufin) A regular set of trees is

definable in FO(+1) over trees iff it is Locally Threshold Testable.

Theorem 14 (Benedikt and Segoufin) A regular set of trees is

definable in FO(+1) over trees iff it is aperiodic.

FO(mod):

T |= (∃r,qx)[ϕ(x, ~y)]
def
⇐⇒

card({a | T |= ϕ(x, ~y)[x 7→ a]}) ≡ r (mod q)

Theorem 15 (Benedikt and Segoufin) A regular set of trees is

definable in FO(mod) over trees iff it is q-periodic.

LTG � FO(+) � FO(mod) � FO(<) � MSO = Reg. over trees

Slide 36

Aperiodic/q-periodic Regular Tree Languages

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

s’

e

t

v

ff

e

t

s’

s

f
u

e

u

s

u

t

u

aperiodic: q = 1

t

... l + q

t t’t’

e ee e
∈ L⇔ ∈ L

∈ L⇔∈ L⇔ ∈ L ∈ L

u

t

u

u

...
l

s

s
e

u

u

f

v

UCLA MathLing 19

Slide 37

MSO and SF—trees

Theorem 16 (Thatcher and Wright, Doner)

MSO over trees = ∃MSO over trees.

Theorem 17 (Thomas)

MSO = “Anti-chain” MSO over trees without unary branching.

MSO = “Frontier” MSO over trees without unary branching.

Theorem 18 (Thomas)

Every Regular tree language without unary branching is Star-Free.

Regular tree languages without unary branching are of uniformly

bounded dot depth.

Without unary branching:

LTG � FO(+1) � FO(mod) � FO(<) � SF = MSO = Reg.

Slide 38

Modal Logics—Trees—Lcore

〈T, ⊳1, ⊳
+
1 , ⊳2, ⊳

+
2 , Pσ〉σ∈Σ as Frame and Valuation

Lcore ϕ : P, ⊤, ¬ϕ, ϕ ∧ ψ, 〈π〉

π : →, ↓, ←, ↑, π∗

T , t |= 〈π〉ϕ
def
⇐⇒ (∃t′)[〈t, t′〉 ∈ RTπ and T , t′ |= ϕ]

RT→
def
= ⊳1

T |{〈s · i, s · j〉} RT↓
def
= ⊳2

T

RT→∗

def
= ⊳∗1

T |{〈s · i, s · j〉} RT↓∗
def
= ⊳∗2

T

RT←
def
= (RT→)−1 etc.

L(ϕ)
def
= {T | T , ε |= ϕ}

UCLA MathLing 20

Slide 39

Modal Logics—Trees—Luntil, Lpdl and Lcp

Luntil ϕ : P, ⊤, ¬ϕ, ϕ ∧ ψ,

U→(ϕ, ψ), U←(ϕ, ψ), U↓(ϕ, ψ), U↑(ϕ, ψ)

T , t |= U↓(ϕ, ψ)
def
⇐⇒ (∃t′)[t ⊳∗2 t

′ and T , t′ |= ϕ and

(∀s)[t ⊳∗2 s ⊳
∗
2 t
′ ⇒ T , s |= ψ]]

Lpdl ϕ : P, ⊤, ¬ϕ, ϕ ∧ ψ, 〈π〉ϕ

π : →, ←, ↓, ↑, ?ϕ, π1;π2, π1 ∪ π2, π
∗

RT

?ϕ

def
= {〈t, t〉 | T , t |= ϕ} RT

π1;π2

def
= RT

π1
◦ RT

π2
RT

π1∪π2

def
= RT

π1
∪ RT

π2

Lcp ϕ : P, ⊤, ¬ϕ, ϕ ∧ ψ, 〈π〉ϕ

π : →, ←, ↓, ↑, ϕ?;π, π∗

LTG � Lcore � Luntil = Lcp = FO(<) � Lpdl � MSO = Reg. (trees)

Slide 40

Beyond CFLs

S

d

c

b
S∗

S
a

S

Sb c

d

S∗b c

S

a S

S∗b c

d

S

a S

S∗b c

d

S

S

d

a

c

b
S∗

S

a dS

a

UCLA MathLing 21

Slide 41

3-Dimensional Domains

〈〈1〉, 〈0〉〉

ε

〈ε〉

〈〈2〉, ε〉
〈〈1〉, ε〉

〈〈1, 0〉〉
〈〈1, 1〉〉

〈〈1〉〉
〈〈2〉〉

〈〈2〉, 〈0〉〉

〈〈1〉, 〈1〉〉

〈〈0〉〉

Slide 42

Yields of T2

f

a

b c

e

d

g

b e f g

UCLA MathLing 22

Slide 43

Yields of T3

f

a

d

i

b

c e

i

h

j

f g

b

h

g
j

e

c

Slide 44

Headed Structures

g

a

d

i

b

c e

b

h

g
j

e

c

f

i

h

j

f

UCLA MathLing 23

Slide 45

Σ-Labeled Headed T3

Definition 3 A Σ-Labeled Headed T3 is a structure:

T = 〈T, ⊳+
i , Ri, Hi, Pσ〉1≤i≤3,σ∈Σ,

• Pσ—points labeled σ.

• Ri—roots of i-dimensional component structures.

• Hi—i-dimensional heads,

– one on the principle spine of each (i− 1)-dimensional

component.

• ⊳+
i —”inherited” proper domination

Theorem 19 A set of Σ-labeled Headed T3 is MSO definable iff it

is recognizable.

Slide 46

Local Sets and Derivation Trees

〈T4, w3〉
T4

sT1

T2

T3

w1
w2

w3

sT1

〈T2, w1〉 〈T3, w2〉

UCLA MathLing 24

Slide 47

Non-Strict TAGs and T3-Automata

Theorem 20 A set of Σ-labeled trees is the yield of a recognizable

set of Σ-labeled T3 iff it is generated by a non-strict TAG with

adjoining constraints.

T3 Automata and Non-Strict TAGs with adjoining constraints are,

in essence, just notational variants.

Slide 48

Feasibility

• While complexity of translation algorithm is non-elementary, in

many actual cases it is practical [Basin and Klarlund’95,

Henriksen et al.’95, Morawietz and Cornell’95, ’98].

• In many cases it isn’t. (viz. indexation) [Morawietz and

Cornell’95, ’98].

• Restricting to tractable formulae:

– Limit the total number of free variables

– Limit the quantifier depth

– Limit the overall size of formulae.

– Morawietz: CLP over recognizable sets of trees

UCLA MathLing 25

Slide 49

Feasibility and TAG

• TAG is index-free.

• All agreement is local to elementary trees

– reduces number of variables needed for feature passing.

• Factorization pushes quantifiers inward

– Conjunction/disjunction of relatively simple formulae.

• Factorizations express constraints on elementary trees

– filters on local trees of the grammar.

Slide 50

Higher-Dimensional Domains

〈〈〈1〉, 〈1〉〉, 〈ε〉〉

〈〈〈0〉〉〉
〈〈〈1〉〉〉
〈〈〈2〉〉〉

〈〈〈1, 0〉〉〉
〈〈〈1, 1〉〉〉
〈〈〈1〉, 〈0〉〉〉
〈〈〈1〉, 〈1〉〉〉

〈〈ε〉〉

〈〈〈1〉, ε〉〉

ε

〈ε〉
〈〈〈2〉〉, ε〉

〈〈〈2〉〉, 〈〈0〉〉〉

〈〈〈2〉〉, 〈ε〉〉

〈〈〈2〉〉, 〈〈1〉〉〉

〈〈〈1〉, 〈1〉〉, 〈〈0〉〉〉

〈〈〈1〉, 〈1〉〉, ε〉

UCLA MathLing 26

Slide 51

Labeled Distinguished Grammars

P1 : A −→ BA

P2 : A −→ BC

P3 : B −→ AB

P4 : B −→ A
P2

B C

B C

A

B A

A B

A

P1

P3

P4

P2

CW (T) = {P1P2, P3P4, P2}

Slide 52

The Control Language Hierarchy (Weir’92)

L(G,C)
def
= {Yield(T) | T ∈ T (G) and CW(T) ⊆ C}

C1: CFL (= L(G,C) for C Regular).

Ci+1: L(G,C) for C ∈ Ci.

Theorem 21 A string language is Yield1
d(T) for some T, a

recognizable set of Td, d ≥ 2, iff it is in Cd−1.

UCLA MathLing 27

Slide 53

Higher-Dimensional Grammars

Theorem 22 (Recognizable Sets and the CLH) A string

language is Yield1
d(T) for some T, a recognizable set of Td, d ≥ 2,

iff it is in Cd−1.

Theorem 23 A set of Σ-labeled Headed Td is MSO definable iff it

is recognizable.

Corollary 2 A string language is Yield1
d(T) for some T, a MSO

definable set of Td, d ≥ 2, iff it is in Cd−1.

Slide 54

Linguistic Theories v.s. Logical Theories

L3

L1

L2

Th2

Th1

Th3
L3

L1

L2

UCLA MathLing 28

Slide 55

Universal Theories

L1

L2

L3

AU

ThU

Th2

Th3

Th1

LU

L3

L2

L1

Slide 56

Language Variation

L2

L1

L3

Th1

Th3

Th2

ThU

AU

L3

L2

LU

L1

A3

A1

A2

UCLA MathLing 29

Slide 57

Structure of Axioms

A3

A3
j+1...

A2
j

A2
j+1...

A1
j

A1
j+1...

Ai

Ai+1
...

(+ choice of logical language = formalism)

A1

A2
...

Class of structures

Language Universals

A1 A2

A3
j

Slide 58

Relevance of FLT to Formal Syntax

• It’s too soon to formalize

– Every hypothetical constraint defines a partial theory.

• Properties of FLT classes are irrelevant to natural language

– FLT classes characterize certain fundamental logical

languages/classes of structures.

– Any class of structures definable in those logical terms will,

consequently, exhibit those properties.

– But they are not the properties that determine the defined

class of structures—the FLT characterizations are

consequences of definability.

