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Word Models
(<) <Da<]a<]+apo>062 (+1) <Da<]a PU>U€E

D — Finite

<t — Linear order on D

4 —  Successor wrt <1
P, — Partition D
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weXr = (DY ()Y, (<N, PY)es
pv G0 <i< ful)
@v € i o<i<w -1}
(@ G0 <i< < ul)
N N )|
A-BE DAY DB (AE (AU (a)8 U (DA x D), PAw PB)
k-grams
k-factors
) if <k
Fy () % {w} if fw]
{lylw==x-y-z, |yl =k}, otherwise.
Slide 6 def
1ae Fo(L) € {F(w) |w e L}

Strictly k-Local Definitions
G C Fe({x} X7 {x})

wEG 3L pawon) g

£(6) ¥ fw | w = 6}
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Scanners

e
X la|b|a|b|a|b|a|b|a|> >|a|b|a|b|a|b|a|b] X
Xa- - bX
3

Strictly Local Generation

lg lke-~u_u‘rlg

‘“P'Uﬂ\‘“‘ the uﬂ\.g
i .,tuﬂ\m\]k%uﬂ\m

slept: uﬂ‘ tikes | Bob Uﬂ‘ Bob

x

Roh Uﬂ ‘ the

r T
X Alice Alice hkes Alice

A]lCE uﬂ‘ the

T \
dog Uﬂ ks Uﬂ slept Uﬂ 2 iice Uﬂ

% Alice likes the dog x X the dog slept x




UCLA MathLing

Slide 9

Slide 10

Character of Strictly 2-Local Sets

Theorem (Suffix Substitution Closure):
A stringset L is strictly 2-local iff whenever there is a word x and

strings w, y, v, and z, such that

w - x -y €L

v -z - z €L
then it will also be the case that

w - x - z €L
Example:

The dog - likes - the biscuit € L
Alice - likes - Bob el
The dog - likes - Bob el

Character of (General) Strictly Local Sets

Theorem (General Suffix Substitution Closure):
a stringset [ is Strictly Local iff there is some k such that whenever
there is a string « of length k£ — 1 and strings w, y, v, and z, such
that

w - x -y €L

v - x - z €L

then it will also be the case that

w - x - z €L
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k-Expressions
« def
f € Fr(x-¥*x) wkf & feF(x-w-X)
eAY wEeANY <d:&> w = and w =Y
def
- wkE-p &= w
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Locally k-Testable Languages (LT}):
def
Lp) = {w|wl ¢}
SLy = /\ [-fi] S LTy
fi€G
LT Automata
((
X [a]blalblalblalblal > > [alblalblalblalb] [X
[b X
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Character of Locally Testable Sets

Locally Testable Sets
A stringset L over X is Locally Testable iff (by definition) there is
some k-expression ¢ over X (for some k) such that L is the set of
all strings that satisfy ¢.

Ly={z e |z}

Theorem (k-Test Invariance):
A stringset L is Locally Testable iff

there is some k such that, for all strings  and v,
if Xx-z-x and X -y - X have exactly the same set of k-factors

then either both x and y are members of L or neither is.

FO(<) (Strings)
<D7 <]7 <]+7 PG'>O'€Z

First-order Quantification over positions in the strings

ray  wlpeiyejeray & i1

r<ty  wr—iy—jlEraty <d:ef> 1< ]

P, (z) w e il Pyx) 4L iep,

QAP :

-P
(F2)[ip ()] w, s = (J2)[p(2)] del w, s[z — 1] | ()]

for some i € D
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Locally Testable with Order (LTOy)
LTy plus

per w|:<pow<d:ef>w:w1-w2, wy = ¢ and wy = 1.

Definition 1 (Star-Free Set) The class of Star-Free Sets (SF)
1s the smallest class of languages satisfying:

e ) € SF, {e} € SF, and {c} € SF for each o € ¥.
o If L1,Ls € SF then: Ly -Ly € SF,

LiULsy € SF,

Ly € SF.

Theorem 1 (McNauthton and Papert) A set of strings is
k-Locally Testable with Order (LTOy,) iff it is Star-Free.

FO(<) over Strings and LTO

wkEa & wE (r,y)r<y A Py(z) A Py(y)]
wkEpey & wl (Iz)p<(x) A=t ()]

wE Py(max) & wloKx
wEmaxcmax < wk fVvaf
wEmax~mn < wkE\ gn[Xox]
wk (32)p@)] & wE GV g, pes, o5 (@) A ()]

S, finite, qr(p:), ar(yi) < qr((Bz)[p(2)))-

Theorem 2 (McNauthton and Papert) A set of strings is
First-order definable over (D,<, <%, Py)oex iff it is Star-Free.
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Character of First-Order Definable Sets

Theorem (McNaughton and Papert):

A stringset L is Star-Free iff it is recognized by a finite-state
automaton that is non-counting (that has an aperiodic syntactic
monoid), that is, iff:

there exists some n > 0 such that
for all strings u, v, w over %
if uv™w occurs in L

n4+1

then uv™ ™ w, for all i > 1, occurs in L as well.

Eg (n=2)

———
my father’s father’s father resembled my father € L

>1

———N—
my father’s father’s (father’s) father resembled my father € L

FO(+1) (Strings)
<D7 <, PO')UGZ
First-order Quantification (over positions in the strings)

Theorem 3 (Thomas) A set of strings is First-order definable
over (D, <", Py)yex iff it is Locally Threshold Testable.

Definition 2 (Locally Threshold Testable) A set L is Locally
Threshold Testable (LTT) iff there is some k and t such that, for
all w,v € ¥*:
if for all f € Fr(x-w-X)U Fg(x-v-K)
either |w|; = |v|; or both |w|, >t and |v], > ¢,

thenw e L < v € L.
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MSO (Strings)
<D7 q, <]+v Pa'>a€2
First-order Quantification (positions)

Monadic Second-order Quantification (sets of positions)

<t is MSO-definable from <.

MSO Example

(3Xo0, X1)[ (Yo, y)[(Xo(z) Az ay) — Xo(y)] A
(V2)[C(z) = Xo(2)] A (B2)[Xo(x) A B()]
(Va, ) [(X1(2) Az ay) — Xa(y)] A
(V2)[B(z) — Xo(x)] A =(32)[A(z) A X1

a ¢ a b b ¢ b
X1 X1 | X | Xy

Xo Xo' Xo Xo Xo Xo

A

]

10
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Automata for MSO

a ¢ a b b ¢ b o -0
X x| x| X L= {Xo)
2 — (X1}
Xo Xo Xo Xo Xo X 3 — {Xo,X1)

a a a a a a
[»]o [o]o [1]1 [2 ]+ [+ [0 [« [2 [«
= ‘x
[x12 (o2 P [a]s ] i[2]2 [s]s [o]x [«
c c l: c ,\’3' c i c “. c
[»[1 ol (ol Wi W [313 [1 [« HEERS
! ¥ . i \ ;

AN

| ) . ¢ !
0 ? A
c C Ii C
) e TR T e T

Theorem 4 (Chomsky Shiitzenberger) A set of strings is
Regular iff it is a homomorphic image of a Strictly 2-Local set.

Definition (Nerode Equivalence): Two strings w and v are
Nerode Equivalent with respect to a stringset L over X (denoted
w =g, v) iff for all strings u over 3, wu € L < vu € L.

Theorem 5 (Myhill-Nerode) : A stringset L is recognizable by
a F'SA (over strings) iff =1, partitions the set of all strings over ¥
into finitely many equivalence classes.

Theorem 6 (Biichi, Elgot) A set of strings is MSO-definable
over (D,<,<T, P,)sex iff it is reqular.

Theorem 7 MSO = AMSO over strings.

SL < FO(+) =LTT < FO(<)=SF < MSO = Reg. (strings)

11
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Modal Logics—Strings—/L ora
(T, 4,9, P,),ex as Frame and Valuation
Eword @ Pa Ta P, @Aw’ <_)>%0a <<_>(10

L) T vt e T Tt = o))
L(o V) # L) UL(8).

Lwora = SL (strings)

Modal Logics—Strings—Adding —*

£—>* SOZ P7 T7 "@7 SD/\l/Ja <_)>%0a <_>*>%0

—h

Ttk (- &4

3t [(t, ') € T and T, ¢’ |= o]
Ttk (o7 &4

@[ ~tor (t,t')e T ) and T,t' = ¢

L) T | T, c = )

Lyora =SL < LT < L. < FO(<) (strings)

12
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Modal Logics—Strings—PTL

Euntil 2 P7 T7 e, <)O/\7~/}a <—>>§0, <—>*>§03 u(%d’)
Ttk Up, ) L (@3r) 1< ¢ and T,¢ = ¢ and

(Vs)[t <* s<* t/ = T,s =]

Lyword = SL < L« < Lyngin = FO(<) = SF (strings)

Modal Logics—Strings—PDL

Epdl @ Pv T, —p, @va <7T>90

™ = ?(;Oa T1;T2, T1 U7T27 T

T,t = (me S @it ) € BT and T, ¢ = o
g7, df 7 R ¥ (i Tt )
def def
77;1;#2 = R;ZT; © RZ"z R‘Z';U‘ffz = Rzl U R;Zl"z

Lyora =SL < L+ < Lynit = FO(<) < Lpat = MSO = Reg. (strings)

13
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Tree Models
(T,<1,<},<9,<3, Py)oes _
T C — Finite Tree domain !

<1 — Immediate left-of (global)
< — Left-of (global) a
<y — Immediate domination o <1>//l :
<j — Proper domination /
P, — Partition D (1,0)

Y-labeled Tree:

T={T7),7:T—YX={zx—o|zecP,}

@

1.1) (2.0)

Local Tree Grammars

A Local Tree Grammar G over ¥ is a finite set of local (height < 1)

Y-labeled trees.

The set of Y-labeled trees licensed by G relative to some set of start

labels S C ¥ is:

() ©yr |Lr(T) C 0, 7o) € 8}

LTG < FO(<F)
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Subtree Substitution Closure

T T
¥ o7 eT = eT
T, ’ T

Theorem 8 A set of labeled trees is Local iff it is closed under

substitution of subtrees rooted at similarly labeled points.

Tree Automata

A Tree Automaton over alphabet ¥ and state set @) is a finite set
ACYE xLT(Tg).

0
1
1 -0
1\“'7\1
0

-0 A--"7
-l A--
A/"O/\BAO

A""O AT

es]
v
\
\
\ =] \
' \
L g
} =
=
\
\
\ =)
v
v

B--"

OneB: A({1}) ={T € Tqa,py | 17|53 =1}
LTG < FO(<F)

15
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Tree Automata
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Slide 31 o ot 0
0 0
(-) 1
AT B

EvenB: A({0}) ={7 € Tya,5 715 =0 (mod 2)}

LTG < FO(<3) < Reg (trees)

A Myhill-Nerode Characterization

Theorem 9 Suppose T C Tyx,. For all T,,75 € Ty, let Ty =1 15 iff,
Slide 32 for every tree T € Tyx, and point s in the domain of T, the result of
substituting 7y at s in T is in T iff the result of substituting 7o is:

TETeT «— TETeT.

Then T is recognizable iff =1 has finite indez.
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FO, MSO—Trees

Theorem 10 (Thatcher) A set of X-labeled trees is recognizable

iff it is a projection of a local set of trees.

Theorem 11 (Thatcher and Wright, Doner) A set of
Y-labeled trees is definable in MSO over trees iff it is recognizable.

LTG < FO(<3) < MSO(<3 ) = Reg (trees)

Theorem 12 (Thatcher) A set of strings L is the yield of a local
set of trees (equivalently, is the yield of a recognizable set of trees)
iff it is Context-Free.

Corollary 1 A set of strings L is the yield of a MSO (or FO)
definable set of trees iff it is Context-Free.

Parsing Model-Theoretic Grammars

Parsing string grammars

Lip) ={w |w = ¢}
Parsing = satisfaction (model checking)

Parsing tree grammars
L(p) ={Yield(T) | T |= ¢}

Let: Yo lef “yield of 7 is w”.
Then: {T | T = uwAe} = parse forest for w.
Recognition = satisfiability of ¥, A ¢

17
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FO—Trees

FO(+1) <Ta <, <]1~‘7 <2, Po‘>o’€2
Theorem 13 (Benedikt and Segoufin) A regular set of trees is
definable in FO(+1) over trees iff it is Locally Threshold Testable.

Theorem 14 (Benedikt and Segoufin) A regular set of trees is
definable in FO(+1) over trees iff it is aperiodic.

FO(mod): ot
T E (392)[p(z, )] €&
card({a | T | ¢(z,7)[z — a]}) =+ (mod q)

Theorem 15 (Benedikt and Segoufin) A regular set of trees is
definable in FO(mod) over trees iff it is q-periodic.

LTG < FO(+) < FO(mod) < FO(<) < MSO = Reg.  over trees

Aperiodic/¢-periodic Regular Tree Languages

aperiodic: ¢ =1

18
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MSO and SF—trees

Theorem 16 (Thatcher and Wright, Doner)
MSO over trees = IMSO over trees.

Theorem 17 (Thomas)
MSO = “Anti-chain” MSO over trees without unary branching.
MSO = “Frontier” MSO over trees without unary branching.

Theorem 18 (Thomas)
Every Regular tree language without unary branching is Star-Free.

Regular tree languages without unary branching are of uniformly
bounded dot depth.

Without unary branching:

LTG < FO(+1) < FO(mod) < FO(<) < SF = MSO = Reg.

Modal Logics—Trees—/L .o
(T, <, <1f, g, <12+, P,)sex as Frame and Valuation

Lecore 2R P, T, P, @Aiﬁ, <7T>

™ la A Tv L

def

Ttk (me 2 @ [(1,¢) € RT and 7,0 = o]
RT def o7 ‘{<8 s ) Rf' def a7
def def
RL. = <7 (s i,s- )} R = <7
RT def (RT)~! etc.

L) YT | T,c = )

19
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Modal Logics—Trees—L i1, Loa1 and L,

Euntil @ P7 T7 Y, @ A 1/1,
U_,(go,dJ), Z/{<_((,0,’l/)), ui(%lz’)v UT(%@Z’)

T, t=U(p,0) <d:d:> (3] t<5t and T,t |= ¢ and

(Vs)[t <5 s<st' = T,s =]

Loar ¢: P, T, 2@, o A, (m)p
T 7y la Tv ?907 1372, T1 U7r2; *
RE ) | Tt o} R’ ©ORL 0BT, Rl R U,
‘Ccp "2 P, T, e, 90/\77&’ <7T>‘p
T‘—: H7 H7 i’ T7 Lp{?;/ﬂ-7 ﬂ-*

LTG < Leore < Luntit = Lep = FO(<) < Loa € MSO = Reg. (trees)

Beyond CFLs

S
_ /’\
S //// S a S d
/’\/,/'/ /’\ /’\
a S <:gl a S d a S d
/’\\\\\/'\ /’\
b S* b~.S* ¢ b S c
/’\
b S* ¢

20
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3-Dimensional Domains

Slide 41

Yields of T2

Slide 42 N

21
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Yields of T3

Headed Structures

22
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Y-Labeled Headed T3

Definition 3 A Y-Labeled Headed T3 is a structure:

T =(T,<}, Ri, Hi, P,)1<i<3 0ex,

y Ng o
e P —points labeled o.
e R;—roots of i-dimensional component structures.

e H,—i-dimensional heads,
— one on the principle spine of each (¢ — 1)-dimensional
component.

+

e < —"inherited” proper domination

Theorem 19 A set of X-labeled Headed T3 is MSO definable iff it
18 recognizable.

Local Sets and Derivation Trees

71&:::::‘7 ) :

23
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Non-Strict TAGs and T3-Automata

Theorem 20 A set of X-labeled trees is the yield of a recognizable
set of X-labeled T3 iff it is generated by a nmon-strict TAG with
adjoining constraints.

T3 Automata and Non-Strict TAGs with adjoining constraints are,

in essence, just notational variants.

Feasibility

e While complexity of translation algorithm is non-elementary, in
many actual cases it is practical [Basin and Klarlund’95,
Henriksen et al.’95, Morawietz and Cornell’95, '98].

e In many cases it isn’t. (viz. indexation) [Morawietz and
Cornell’95, "98].

e Restricting to tractable formulae:
— Limit the total number of free variables
— Limit the quantifier depth

— Limit the overall size of formulae.

— Morawietz: CLP over recognizable sets of trees

24
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Feasibility and TAG

e TAG is index-free.

e All agreement is local to elementary trees
— reduces number of variables needed for feature passing.
e Factorization pushes quantifiers inward

— Conjunction/disjunction of relatively simple formulae.

e Factorizations express constraints on elementary trees

— filters on local trees of the grammar.

Higher-Dimensional Domains

25
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Labeled Distinguished Grammars

C

A
Py
P1: A—>BA /\
P: A— BC B A
Py: B— AB N PN
P,: B—A A B B
N\ [
B C A

CW(T) = {P\Ps, P3Py, P>}

The Control Language Hierarchy (Weir’92)

LG, 0) ¥ (Yield(T) | T € T(@) and CW(T) € O}
C1: CFL (= L(G, C) for C Regular).
CZ'+1Z L(G, C) for C S Cz

Theorem 21 A string language is Yieldy(T) for some T, a
recognizable set of Td, d > 2, iff it is in Cq_1.

26
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Higher-Dimensional Grammars

Theorem 22 (Recognizable Sets and the CLH) A string
language is Yieldé(']l‘) for some T, a recognizable set of Td, d > 2,
iff it is in Cq—_1.

Theorem 23 A set of X-labeled Headed Td is MSO definable iff it
18 recognizable.

Corollary 2 A string language is Yieldy(T) for some T, a MSO
definable set of Td, d > 2, iff it is in Cq—1.

Linguistic Theories v.s. Logical Theories

o

VoL

27
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Universal Theories

Slide 55

Language Variation

Slide 56

28
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Structure of Axioms

A
A,

A1

Class of structures
(4 choice of logical language = formalism)

Language Universals

Relevance of FLT to Formal Syntax

e [t’s too soon to formalize

— Every hypothetical constraint defines a partial theory.

e Properties of FLT classes are irrelevant to natural language

— FLT classes characterize certain fundamental logical

languages/classes of structures.

— Any class of structures definable in those logical terms will,

consequently, exhibit those properties.

— But they are not the properties that determine the defined

class of structures—the FLT characterizations are

consequences of definability.

29



