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Word Models

(<) 〈D, ⊳, ⊳+, Pσ〉σ∈Σ (+1) 〈D, ⊳, Pσ〉σ∈Σ

D — Finite

⊳+ — Linear order on D

⊳ — Successor wrt ⊳+

Pσ — Partition D

w ∈ Σ∗ ≡ 〈Dw, (⊳)w, (⊳+)w, Pwσ 〉σ∈Σ

Dw
def
= {i | 0 ≤ i < |w|}

(⊳)w
def
= {〈i, i+ 1〉 | 0 ≤ i < |w| − 1}

(⊳+)w
def
= {〈i, j〉 | 0 ≤ i < j < |w|}

Pwσ
def
= {i | w = u · σ · v, |u| = i}

A · B
def
= 〈DA ⊎ DB, (⊳)A·B, (⊳+)A ∪ (⊳+)B ∪ (DA ×DB), PAσ ⊎ P

B
σ 〉
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k-grams

k-factors

Fk(w)
def
=







{w}, if |w| < k

{y | w = x · y · z, |y| = k}, otherwise.

Fk(L)
def
= {Fk(w) | w ∈ L}

Strictly k-Local Definitions

G ⊆ Fk({⋊} · Σ
∗ · {⋉})

w |= G
def
⇐⇒ Fk(⋊ · w ·⋉) ⊆ G

L(G)
def
= {w | w |= G}
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Scanners

QD

a b a b a b a b a babababa
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a

∈
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Strictly Local Generation

TheAlice

Alice likes dogThe

likes sleptdogthe

the sleptdog

dog

⋊ Alice likes the dog ⋉ ⋊ the dog slept ⋉

the

biscuit likes

⋉Alice

Bob slept

thelikes

⋊

dog slept

Boblikes

biscuit slept

Alicelikes

the biscuit

⋊

the dog

Bob⋊

Alice⋊ Alice likes

⋉biscuit

Alice slept ⋉slept

⋊

Bob likes

⋉dogdog likes

⋉Bob

⋉

⋉



UCLA MathLing 5

Slide 9

Character of Strictly 2-Local Sets

Theorem (Suffix Substitution Closure):

A stringset L is strictly 2-local iff whenever there is a word x and

strings w, y, v, and z, such that

w · x · y ∈ L

v · x · z ∈ L

then it will also be the case that

w · x · z ∈ L

Example:

The dog · likes · the biscuit ∈ L

Alice · likes · Bob ∈ L

The dog · likes · Bob ∈ L
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Character of (General) Strictly Local Sets

Theorem (General Suffix Substitution Closure):

a stringset l is Strictly Local iff there is some k such that whenever

there is a string x of length k − 1 and strings w, y, v, and z, such

that

w · x · y ∈ L

v · x · z ∈ L

then it will also be the case that

w · x · z ∈ L
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k-Expressions

f ∈ Fk(⋊ · Σ
∗⋉) w |= f

def
⇐⇒ f ∈ Fk(⋊ · w ·⋉)

ϕ ∧ ψ w |= ϕ ∧ ψ
def
⇐⇒ w |= ϕ and w |= ψ

¬ϕ w |= ¬ϕ
def
⇐⇒ w 6|= ϕ

Locally k-Testable Languages (LTk):

L(ϕ)
def
= {w | w |= ϕ}

SLk ≡
∧

fi 6∈G

[¬fi] ( LTk

Slide 12

LT Automata

a

b

ba

b a

b b

a

b

aa

φ

Boolean
Network

a b a b a b a b a babababa

a a b b
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Character of Locally Testable Sets

Locally Testable Sets

A stringset L over Σ is Locally Testable iff (by definition) there is

some k-expression ϕ over Σ (for some k) such that L is the set of

all strings that satisfy ϕ.

Lϕ = {x ∈ Σ∗ | x |= ϕ}

Theorem (k-Test Invariance):

A stringset L is Locally Testable iff

there is some k such that, for all strings x and y,

if ⋊ · x ·⋉ and ⋊ · y ·⋉ have exactly the same set of k-factors

then either both x and y are members of L or neither is.

Slide 14

FO(<) (Strings)

〈D, ⊳, ⊳+, Pσ〉σ∈Σ

First-order Quantification over positions in the strings

x ⊳ y w, [x 7→ i, y 7→ j] |= x ⊳ y
def
⇐⇒ j = i+ 1

x ⊳+ y w, [x 7→ i, y 7→ j] |= x ⊳+ y
def
⇐⇒ i < j

Pσ(x) w, [x 7→ i] |= Pσ(x)
def
⇐⇒ i ∈ Pσ

ϕ ∧ ψ
...

¬ϕ
...

(∃x)[ϕ(x)] w, s |= (∃x)[ϕ(x)]
def
⇐⇒ w, s[x 7→ i] |= ϕ(x)]

for some i ∈ D
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Locally Testable with Order (LTOk)

LTk plus

ϕ • ψ w |= ϕ • ψ
def
⇐⇒ w = w1 · w2, w1 |= ϕ and w2 |= ψ.

Definition 1 (Star-Free Set) The class of Star-Free Sets (SF)

is the smallest class of languages satisfying:

• ∅ ∈ SF, {ε} ∈ SF, and {σ} ∈ SF for each σ ∈ Σ.

• If L1, L2 ∈ SF then: L1 · L2 ∈ SF,

L1 ∪ L2 ∈ SF,

L1 ∈ SF.

Theorem 1 (McNauthton and Papert) A set of strings is

k-Locally Testable with Order (LTOk) iff it is Star-Free.
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FO(<) over Strings and LTO

w |= ab ⇔ w |= (∃x, y)[x ⊳ y ∧ Pa(x) ∧ Pb(y)]

w |= ϕ • ψ ⇔ w |= (∃x)[ϕ<x(x) ∧ ψ≥x(x)]

w |= Pσ(max) ⇔ w |= σ⋉

w |= max ≈ max ⇔ w |= f ∨ ¬f

w |= max ≈ min ⇔ w |=
∨

σ∈Σ[⋊σ⋉]

w |= (∃x)[ϕ(x)] ⇔ w |= (∃x)[
∨

〈ϕi,ψi〉∈Sϕ
[ϕ<xi (x) ∧ ψ≥xi (x)] ]

Sϕ finite, qr(ϕi), qr(ψi) < qr((∃x)[ϕ(x)]).

Theorem 2 (McNauthton and Papert) A set of strings is

First-order definable over 〈D, ⊳, ⊳+, Pσ〉σ∈Σ iff it is Star-Free.
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Character of First-Order Definable Sets

Theorem (McNaughton and Papert):

A stringset L is Star-Free iff it is recognized by a finite-state

automaton that is non-counting (that has an aperiodic syntactic

monoid), that is, iff:

there exists some n > 0 such that

for all strings u, v, w over Σ

if uvnw occurs in L

then uvn+iw, for all i ≥ 1, occurs in L as well.

E.g. (n = 2)

my
︷ ︸︸ ︷

father’s
︷ ︸︸ ︷

father’s father resembled my father ∈ L

my
︷ ︸︸ ︷

father’s
︷ ︸︸ ︷

father’s

≥1
︷ ︸︸ ︷

(father’s) father resembled my father ∈ L
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FO(+1) (Strings)

〈D, ⊳, Pσ〉σ∈Σ

First-order Quantification (over positions in the strings)

Theorem 3 (Thomas) A set of strings is First-order definable

over 〈D, ⊳+, Pσ〉σ∈Σ iff it is Locally Threshold Testable.

Definition 2 (Locally Threshold Testable) A set L is Locally

Threshold Testable (LTT) iff there is some k and t such that, for

all w, v ∈ Σ∗:

if for all f ∈ Fk(⋊ · w ·⋉) ∪ Fk(⋊ · v ·⋉)

either |w|f = |v|f or both |w|f ≥ t and |v|f ≥ t,

then w ∈ L ⇐⇒ v ∈ L.
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MSO (Strings)

〈D, ⊳, ⊳+, Pσ〉σ∈Σ

First-order Quantification (positions)

Monadic Second-order Quantification (sets of positions)

⊳+ is MSO-definable from ⊳.
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MSO Example

(∃X0, X1)[ (∀x, y)[(X0(x) ∧ x ⊳ y)→ X0(y)] ∧

(∀x)[C(x)→ X0(x)] ∧ (∃x)[X0(x) ∧B(x)] ∧

(∀x, y)[(X1(x) ∧ x ⊳ y)→ X1(y)] ∧

(∀x)[B(x)→ X0(x)] ∧ ¬(∃x)[A(x) ∧X1] ]

a c a

X0

b

X0

X1

b

X0

X1

c

X0

X1

b

X0

X1

X0
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Automata for MSO

a c a

X0

b

X0

X1

b

X0

X1

c

X0

X1

b

X0

X1

X0

0 − ∅

1 − {X0}

2 − {X1}

3 − {X0, X1}

a

0

c

0 1

3

0 0

a

1

a

1

1 3
b

0

b

2

1

c

0 1

c

1 1

c

0

a

b

2 2

b

2

2

c

3

2

a

f

3

b

3

c

3

3

a

f

0

b

1

b

0

a

3

b

3

c

2

b

1 1

a

1
c

1 3

b

b

33
3

c

3
b

3⋊

⋊

⋊

⋊ ⋉

⋉

⋉

⋉

⋉

⋉

⋊
⋉
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Theorem 4 (Chomsky Shützenberger) A set of strings is

Regular iff it is a homomorphic image of a Strictly 2-Local set.

Definition (Nerode Equivalence): Two strings w and v are

Nerode Equivalent with respect to a stringset L over Σ (denoted

w ≡L v) iff for all strings u over Σ, wu ∈ L⇔ vu ∈ L.

Theorem 5 (Myhill-Nerode) : A stringset L is recognizable by

a FSA (over strings) iff ≡L partitions the set of all strings over Σ

into finitely many equivalence classes.

Theorem 6 (Büchi, Elgot) A set of strings is MSO-definable

over 〈D, ⊳, ⊳+, Pσ〉σ∈Σ iff it is regular.

Theorem 7 MSO = ∃MSO over strings.

SL � FO(+) = LTT � FO(<) = SF � MSO = Reg. (strings)
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Modal Logics—Strings—Lword

〈T, ⊳, ⊳+, Pσ〉σ∈Σ as Frame and Valuation

Lword ϕ : P, ⊤, ¬ϕ, ϕ ∧ ψ, 〈→〉ϕ, 〈←〉ϕ

L(ϕ)
def
= {T | ∀(t ∈ T )[T , t |= ϕ]}

L(ϕ ∨ ψ) 6= L(ϕ) ∪ L(ψ).

Lword = SL (strings)
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Modal Logics—Strings—Adding →∗

L→
∗ ϕ : P, ⊤, ¬ϕ, ϕ ∧ ψ, 〈→〉ϕ, 〈→∗〉ϕ

T , t |= 〈→〉ϕ
def
⇐⇒ (∃t′)[〈t, t′〉 ∈ T ⊳ and T , t′ |= ϕ]

T , t |= 〈→∗〉ϕ
def
⇐⇒ (∃t′)[(t′ ≈ t or 〈t, t′〉 ∈ T ⊳

+

) and T , t′ |= ϕ]

L(ϕ)
def
= {T | T , ε |= ϕ}

Lword = SL � LT � L→∗ � FO(<) (strings)
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Modal Logics—Strings—PTL

Luntil ϕ : P, ⊤, ¬ϕ, ϕ ∧ ψ, 〈→〉ϕ, 〈→∗〉ϕ, U(ϕ, ψ)

T , t |= U(ϕ, ψ)
def
⇐⇒ (∃t′)[ t ⊳∗ t′ and T , t′ |= ϕ and

(∀s)[t ⊳∗ s ⊳∗ t′ ⇒ T , s |= ψ]]

Lword = SL � L→∗ � Luntil = FO(<) = SF (strings)
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Modal Logics—Strings—PDL

Lpdl ϕ : P, ⊤, ¬ϕ, ϕ ∧ ψ, 〈π〉ϕ

π : →, ?ϕ, π1;π2, π1 ∪ π2, π
∗

T , t |= 〈π〉ϕ
def
⇐⇒ (∃t′)[〈t, t′〉 ∈ RTπ and T , t′ |= ϕ]

RT→
def
= ⊳T RT?ϕ

def
= {〈t, t〉 | T , t |= ϕ}

RTπ1;π2

def
= RTπ1

◦RTπ2
RTπ1∪π2

def
= RTπ1

∪RTπ2

Lword = SL � L→∗ � Luntil = FO(<) � Lpdl = MSO = Reg. (strings)
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Tree Models

〈T, ⊳1, ⊳
+
1 , ⊳2, ⊳

+
2 , Pσ〉σ∈Σ

T ⊆ — Finite Tree domain

⊳1 — Immediate left-of (global)

⊳+
1 — Left-of (global)

⊳2 — Immediate domination

⊳+
2 — Proper domination

Pσ — Partition D 〈2, 0〉

ε

〈0〉 〈1〉 〈2〉

〈1, 0〉 〈1, 1〉

Σ-labeled Tree:

T = 〈T, τ 〉, τ : T → Σ = {x 7→ σ | x ∈ Pσ}
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Local Tree Grammars

A

A A

A

A

A B

A A

B A

B

A A

A

BA

A

AB

A

A A

A Local Tree Grammar G over Σ is a finite set of local (height ≤ 1)

Σ-labeled trees.

The set of Σ-labeled trees licensed by G relative to some set of start

labels S ⊆ Σ is: G(S)
def
= {T | LT(T ) ⊆ G, τ (ε) ∈ S}

LTG ≤ FO(⊳+
2 )
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Subtree Substitution Closure

,

γ

T1

T2

γ

T1

T4

γ

T3

T4

∈ T ⇒ ∈ T

Theorem 8 A set of labeled trees is Local iff it is closed under

substitution of subtrees rooted at similarly labeled points.
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Tree Automata

A Tree Automaton over alphabet Σ and state set Q is a finite set

A ⊆ Σ× LT(TQ).

0
1

1
0

0
1 0 0

0
0

A

A
A

A
B A A

A
A

A

B

1

A

0

B

A

A

0

1

1

0 1

1

0
0

0 0

1

OneB: A({1}) = {T ∈ T{A,B} | |T |B = 1}

LTG � FO(⊳+
2 )
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Tree Automata

0

0 0
A

1

0 1
A

1

1 0
A

0

1 1
A

0

A

1

1 1
B

1

B

1

0 0
B

0

0 1
B

0

1 0
B

0

1
1

0
1 1 1

0
0

A

A
B

A
B B B

A
A

EvenB: A({0}) = {T ∈ T{A,B} | |T |B ≡ 0 (mod 2)}

LTG � FO(⊳+
2 ) � Reg (trees)
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A Myhill-Nerode Characterization

Theorem 9 Suppose T ⊆ TΣ. For all T1, T2 ∈ TΣ, let T1 ≡T T2 iff,

for every tree T ∈ TΣ and point s in the domain of T , the result of

substituting T1 at s in T is in T iff the result of substituting T2 is:

T
s
← T1 ∈ T ⇐⇒ T

s
← T2 ∈ T.

Then T is recognizable iff ≡T has finite index.
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FO, MSO—Trees

Theorem 10 (Thatcher) A set of Σ-labeled trees is recognizable

iff it is a projection of a local set of trees.

Theorem 11 (Thatcher and Wright, Doner) A set of

Σ-labeled trees is definable in MSO over trees iff it is recognizable.

LTG � FO(⊳+
2 ) � MSO(⊳+

2 ) = Reg (trees)

Theorem 12 (Thatcher) A set of strings L is the yield of a local

set of trees (equivalently, is the yield of a recognizable set of trees)

iff it is Context-Free.

Corollary 1 A set of strings L is the yield of a MSO (or FO)

definable set of trees iff it is Context-Free.
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Parsing Model-Theoretic Grammars

Parsing string grammars

L(ϕ) = {w | w |= ϕ}

Parsing = satisfaction (model checking)

Parsing tree grammars

L(ϕ) = {Yield(T ) | T |= ϕ}

Let: ψw
def
= “yield of T is w”.

Then: {T | T |= ψw ∧ ϕ} = parse forest for w.

Recognition = satisfiability of ψw ∧ ϕ
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FO—Trees

FO(+1): 〈T, ⊳1, ⊳
+
1 , ⊳2, Pσ〉σ∈Σ

Theorem 13 (Benedikt and Segoufin) A regular set of trees is

definable in FO(+1) over trees iff it is Locally Threshold Testable.

Theorem 14 (Benedikt and Segoufin) A regular set of trees is

definable in FO(+1) over trees iff it is aperiodic.

FO(mod):

T |= (∃r,qx)[ϕ(x, ~y)]
def
⇐⇒

card({a | T |= ϕ(x, ~y)[x 7→ a]}) ≡ r (mod q)

Theorem 15 (Benedikt and Segoufin) A regular set of trees is

definable in FO(mod) over trees iff it is q-periodic.

LTG � FO(+) � FO(mod) � FO(<) � MSO = Reg. over trees

Slide 36

Aperiodic/q-periodic Regular Tree Languages
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MSO and SF—trees

Theorem 16 (Thatcher and Wright, Doner)

MSO over trees = ∃MSO over trees.

Theorem 17 (Thomas)

MSO = “Anti-chain” MSO over trees without unary branching.

MSO = “Frontier” MSO over trees without unary branching.

Theorem 18 (Thomas)

Every Regular tree language without unary branching is Star-Free.

Regular tree languages without unary branching are of uniformly

bounded dot depth.

Without unary branching:

LTG � FO(+1) � FO(mod) � FO(<) � SF = MSO = Reg.

Slide 38

Modal Logics—Trees—Lcore

〈T, ⊳1, ⊳
+
1 , ⊳2, ⊳

+
2 , Pσ〉σ∈Σ as Frame and Valuation

Lcore ϕ : P, ⊤, ¬ϕ, ϕ ∧ ψ, 〈π〉

π : →, ↓, ←, ↑, π∗

T , t |= 〈π〉ϕ
def
⇐⇒ (∃t′)[〈t, t′〉 ∈ RTπ and T , t′ |= ϕ]

RT→
def
= ⊳1

T |{〈s · i, s · j〉} RT↓
def
= ⊳2

T

RT→∗

def
= ⊳∗1

T |{〈s · i, s · j〉} RT↓∗
def
= ⊳∗2

T

RT←
def
= (RT→)−1 etc.

L(ϕ)
def
= {T | T , ε |= ϕ}
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Modal Logics—Trees—Luntil, Lpdl and Lcp

Luntil ϕ : P, ⊤, ¬ϕ, ϕ ∧ ψ,

U→(ϕ, ψ), U←(ϕ, ψ), U↓(ϕ, ψ), U↑(ϕ, ψ)

T , t |= U↓(ϕ, ψ)
def
⇐⇒ (∃t′)[ t ⊳∗2 t

′ and T , t′ |= ϕ and

(∀s)[t ⊳∗2 s ⊳
∗
2 t
′ ⇒ T , s |= ψ]]

Lpdl ϕ : P, ⊤, ¬ϕ, ϕ ∧ ψ, 〈π〉ϕ

π : →, ←, ↓, ↑, ?ϕ, π1;π2, π1 ∪ π2, π
∗

RT

?ϕ

def
= {〈t, t〉 | T , t |= ϕ} RT

π1;π2

def
= RT

π1
◦ RT

π2
RT

π1∪π2

def
= RT

π1
∪ RT

π2

Lcp ϕ : P, ⊤, ¬ϕ, ϕ ∧ ψ, 〈π〉ϕ

π : →, ←, ↓, ↑, ϕ?;π, π∗

LTG � Lcore � Luntil = Lcp = FO(<) � Lpdl � MSO = Reg. (trees)
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Beyond CFLs

S
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b
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3-Dimensional Domains

〈〈1〉, 〈0〉〉

ε

〈ε〉

〈〈2〉, ε〉
〈〈1〉, ε〉

〈〈1, 0〉〉
〈〈1, 1〉〉

〈〈1〉〉
〈〈2〉〉

〈〈2〉, 〈0〉〉

〈〈1〉, 〈1〉〉

〈〈0〉〉
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Yields of T2
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Yields of T3
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Headed Structures
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Σ-Labeled Headed T3

Definition 3 A Σ-Labeled Headed T3 is a structure:

T = 〈T, ⊳+
i , Ri, Hi, Pσ〉1≤i≤3,σ∈Σ,

• Pσ—points labeled σ.

• Ri—roots of i-dimensional component structures.

• Hi—i-dimensional heads,

– one on the principle spine of each (i− 1)-dimensional

component.

• ⊳+
i —”inherited” proper domination

Theorem 19 A set of Σ-labeled Headed T3 is MSO definable iff it

is recognizable.
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Local Sets and Derivation Trees

〈T4, w3〉
T4

sT1

T2

T3

w1
w2

w3

sT1

〈T2, w1〉 〈T3, w2〉
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Non-Strict TAGs and T3-Automata

Theorem 20 A set of Σ-labeled trees is the yield of a recognizable

set of Σ-labeled T3 iff it is generated by a non-strict TAG with

adjoining constraints.

T3 Automata and Non-Strict TAGs with adjoining constraints are,

in essence, just notational variants.
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Feasibility

• While complexity of translation algorithm is non-elementary, in

many actual cases it is practical [Basin and Klarlund’95,

Henriksen et al.’95, Morawietz and Cornell’95, ’98].

• In many cases it isn’t. (viz. indexation) [Morawietz and

Cornell’95, ’98].

• Restricting to tractable formulae:

– Limit the total number of free variables

– Limit the quantifier depth

– Limit the overall size of formulae.

– Morawietz: CLP over recognizable sets of trees
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Feasibility and TAG

• TAG is index-free.

• All agreement is local to elementary trees

– reduces number of variables needed for feature passing.

• Factorization pushes quantifiers inward

– Conjunction/disjunction of relatively simple formulae.

• Factorizations express constraints on elementary trees

– filters on local trees of the grammar.
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Higher-Dimensional Domains

〈〈〈1〉, 〈1〉〉, 〈ε〉〉

〈〈〈0〉〉〉
〈〈〈1〉〉〉
〈〈〈2〉〉〉

〈〈〈1, 0〉〉〉
〈〈〈1, 1〉〉〉
〈〈〈1〉, 〈0〉〉〉
〈〈〈1〉, 〈1〉〉〉

〈〈ε〉〉

〈〈〈1〉, ε〉〉

ε

〈ε〉
〈〈〈2〉〉, ε〉

〈〈〈2〉〉, 〈〈0〉〉〉

〈〈〈2〉〉, 〈ε〉〉

〈〈〈2〉〉, 〈〈1〉〉〉

〈〈〈1〉, 〈1〉〉, 〈〈0〉〉〉

〈〈〈1〉, 〈1〉〉, ε〉
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Labeled Distinguished Grammars

P1 : A −→ BA

P2 : A −→ BC

P3 : B −→ AB

P4 : B −→ A
P2

B C

B C

A

B A

A B

A

P1

P3

P4

P2

CW (T ) = {P1P2, P3P4, P2}
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The Control Language Hierarchy (Weir’92)

L(G,C)
def
= {Yield(T ) | T ∈ T (G) and CW(T ) ⊆ C}

C1: CFL (= L(G,C) for C Regular).

Ci+1: L(G,C) for C ∈ Ci.

Theorem 21 A string language is Yield1
d(T) for some T, a

recognizable set of Td, d ≥ 2, iff it is in Cd−1.
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Higher-Dimensional Grammars

Theorem 22 (Recognizable Sets and the CLH) A string

language is Yield1
d(T) for some T, a recognizable set of Td, d ≥ 2,

iff it is in Cd−1.

Theorem 23 A set of Σ-labeled Headed Td is MSO definable iff it

is recognizable.

Corollary 2 A string language is Yield1
d(T) for some T, a MSO

definable set of Td, d ≥ 2, iff it is in Cd−1.
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Linguistic Theories v.s. Logical Theories

L3

L1

L2

Th2

Th1

Th3
L3

L1

L2
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Universal Theories

L1

L2

L3

AU

ThU

Th2

Th3

Th1

LU

L3

L2

L1
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Language Variation

L2

L1

L3

Th1

Th3

Th2

ThU
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L3

L2
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L1

A3

A1
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Structure of Axioms

A3

A3
j+1...

A2
j

A2
j+1...

A1
j

A1
j+1...

Ai

Ai+1
...

(+ choice of logical language = formalism)

A1

A2
...

Class of structures

Language Universals

A1 A2

A3
j
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Relevance of FLT to Formal Syntax

• It’s too soon to formalize

– Every hypothetical constraint defines a partial theory.

• Properties of FLT classes are irrelevant to natural language

– FLT classes characterize certain fundamental logical

languages/classes of structures.

– Any class of structures definable in those logical terms will,

consequently, exhibit those properties.

– But they are not the properties that determine the defined

class of structures—the FLT characterizations are

consequences of definability.


