UDel 2013

Model-Theory of the Subregular

James Rogers

Dept. of Computer Science Earlham College

and

Dept. of Linguistics and Cognitive Science University of Delaware

jrogers@cs.earlham.edu

http://cs.earlham.edu/~jrogers/slides/UDelTG.ho.pdf

Joint work with Jeff Heinz (UDel), Sean Wibel, Maggie Fero and Dakotah Lambert (EC)

Finite and Co-Finite stringsets

Definition 1 (Finite Stringsets (Fin)) For any alphabet Σ :

- \emptyset is a finite stringset over Σ ,
- The singleton set $\{\varepsilon\}$ is a finite stringset over Σ ,
- For each $\sigma \in \Sigma$, the singleton set $\{\sigma\}$ is a finite stringset over Σ .

Slide 2

Slide 1

- If L_1 and L_2 are finite stringsets over Σ then:
 - $L_1 \cdot L_2$ is a finite stringset over Σ ,
 - $-L_1 \cup L_2$ is a finite stringset over Σ .
- Nothing else is a finite stringset over Σ .

Definition 2 (Co-Finite (CoFin))

$$L \in CoFin \stackrel{def}{\iff} L = \Sigma^* - F, \ F \in Fin.$$

Star-free stringsets

Definition 3 (Star-free Stringsets (SF)) For any alphabet Σ :

• $Fin \subset SF$,

Slide 3

Slide 4

• If $L_1, L_2 \in SF$ then:

$$-L_1 \cdot L_2 \in SF$$

$$-L_1 \cup L_2 \in SF$$

$$- \Sigma^* - L_1 \in SF$$

• Nothing else is a star-free stringset over Σ .

Word models

nodels
$$\langle \mathcal{D}, \triangleleft, \triangleleft^+, P_{\sigma} \rangle_{\sigma \in \Sigma}$$

$$(+1) \quad \langle \mathcal{D}, \triangleleft, P_{\sigma} \rangle_{\sigma \in \Sigma} \quad (<) \quad \langle \mathcal{D}, \triangleleft^+, P_{\sigma} \rangle_{\sigma \in \Sigma}$$

$$\mathcal{D}$$
 — Finite

$$\vartriangleleft^+ \quad - \quad \text{Linear order on } \mathcal{D}$$

$$\triangleleft$$
 — Successor wrt \triangleleft ⁺

$$P_{\sigma} \subseteq D$$
 — Subset of \mathcal{D} at which σ occurs $(P_{\sigma} \text{ partition } \mathcal{D})$

$$CCVC = \langle \{0, 1, 2, 3\}, \{\langle i, i+1 \rangle \mid 0 \le i < 3\}, \{0, 1, 3\}_C, \{2\}_V \rangle$$

$$\langle \mathcal{D} \quad \triangleleft \quad P_C \quad P_V \rangle$$

Thomas's Word models [Thomas'82]

 $\langle \mathcal{D}, <, \min, \max, S, P, Q_{\sigma} \rangle_{\sigma \in \Sigma}$

 \mathcal{D} — $\{0,1,\ldots n\}$

< — Linear order on \mathcal{D}

 $\min \in D$ — Minimum elelment of D

 $\max \in D$ — Maximum elelment of D

 $S(\tau): D \to D$ — Successor wrt <, $S(\max) = \max$

 $P(\tau): D \to D$ — Predecessor wrt <, $P(\min) = \min$

 $Q_{\sigma} \subseteq D$ — Subset of \mathcal{D} at which σ occurs $(Q_{\sigma} \text{ partition } \mathcal{D})$

First-order formulae over word models

Definition 4 $(L^1(\Sigma))$

 $X_0 = \{x_0, x_1, \ldots\}, \text{ a countably infinite set of position variables.}$

- 1. (Atomic formulae)
 - (a) $x \triangleleft y \in L^1$.
 - (b) $x \triangleleft^+ y \in L^1$.

Slide 6

- (c) If $x, y \in \mathbb{X}_0$ then ' $x \approx y$ ' $\in L^1(\Sigma)$.
- 2. (Truth functional connectives) If $\varphi, \psi \in L^1(\Sigma)$ then:
 - (a) ' $(\varphi \lor \psi)$ ' $\in L^1(\Sigma)$ (disjunction),
 - (b) ' $(\neg \varphi)$ ' $\in L^1(\Sigma)$ (negation)
- 3. (First-Order quantifiers) If $\varphi \in L^1(\Sigma)$ and $x \in \mathbb{X}_0$ then
 - (a) ' $(\exists x)[\varphi]$ ' $\in L^1(\Sigma)$ (existential quantification)

Defined connectives

- 1. $(\varphi \wedge \psi) \equiv (\neg((\neg \varphi) \vee (\neg \psi)))$ (conjunction),
- 2. $(\varphi \to \psi) \equiv ((\neg \varphi) \lor \psi))$ (implication),

Slide 7 3. $(\varphi \leftrightarrow \psi) \equiv ((\varphi \land \psi) \lor ((\neg \varphi) \land (\neg \psi)))$ (bi-conditional),

Defined quantifiers

1. $(\forall x)[\varphi] \equiv (\neg(\exists x)[\neg\varphi])$ (universal quantification).

FO assignment

Slide 8

Definition 5 An assignment s for a model W is a partial function from X_0 to the domain of W. The empty assignment is not defined for any variable. If s is an assignment, $x \in X_0$ and a in the domain of W, then

 $s[x \mapsto a](y) \stackrel{def}{=} \begin{cases} a & if \ y = x, \\ s(y) & otherwise. \end{cases}$

FO satisfaction

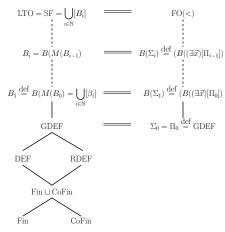
Definition 6 An assignment s satisfies a formula φ in a model W, denoted W, $s \models \varphi$, iff one of the following holds:

- $\varphi = x \triangleleft y$, s(x) and s(y) are both defined and $\langle s(x), s(y) \rangle \in \triangleleft^{\mathcal{W}}$.
- $\varphi = x \triangleleft^+ y$, s(x) and s(y) are both defined and $\langle s(x), s(y) \rangle \in \triangleleft^{+W}$.

Slide 9

- $\varphi = P_{\sigma}(x), s(x) \text{ is defined and } s(x) \in P_{\sigma}^{\mathcal{W}}.$
- $\varphi = 'x \approx y'$, s(x) and s(y) are both defined and s(x) = s(y),
- $\varphi = (\psi_1 \vee \psi_2)$ and either $W, s \models \psi_1$ or $W, s \models \psi_2$,
- $\varphi = (\neg \psi)'$ and $\mathcal{W}, s \not\models \psi, \mathcal{W}, s[x \mapsto a] \models \psi, or$
- $\varphi = `(\exists x)[\psi] ` and, for some a in the domain of W, W, s[x \mapsto a] \models \psi$

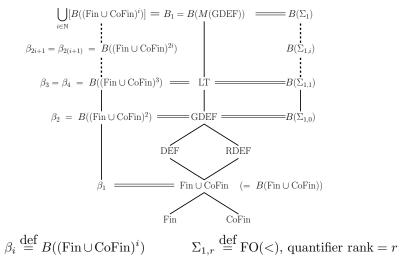
Dot Depth Hierarchy [Cohen & Brzozowski'71] Quantifier Alternation Hierarchy [Thomas'82]



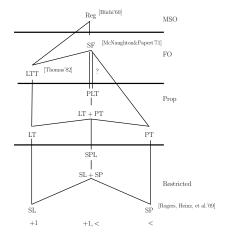
Slide 10

 $B_i \stackrel{\text{def}}{=} B(M(B_{i-1}))$ $\Sigma_0 = \Pi_0 \stackrel{\text{def}}{=} \text{q.f.}, \ \Pi_i \stackrel{\text{def}}{=} \neg \Sigma_i, \ \Sigma_i \stackrel{\text{def}}{=} (\exists \vec{x})[\Pi_{i-1}]$

Beta Hierarchy [Brzozowski & Simon'73] Quantifier-Rank Hierarchy [Thomas'82]



Local Hierarchy [McNaughton & Papert'71] Piecewise Hierarchy [Simon'75, Rogers, Heinz, et al.'09]



Slide 12

Definition 7 (k-Factors, \mathbf{F}_k) Let $\mathbf{F}_k(w)$ denote the set of length k sequences of adjacent symbols that occur in w. If $|w| \leq k$ then $\mathbf{F}_k(w)$ is just the (single) sequence of symbols in w.

$$F_k(L) \stackrel{def}{=} \{ F_k(w) \mid w \in L \}.$$

Similarly

$$F_{< k}(w) \stackrel{def}{=} \bigcup_{2 < i < k} [F_i(w)]$$

Slide 13

etc.

$$\begin{array}{lll} F_2(\rtimes abab \ltimes) & = & \{\rtimes a, ab, ba, b \aleph\} \\ F_3(\rtimes abab \ltimes) & = & \{\rtimes ab, aba, bab, ab \aleph\} \\ F_7(\rtimes abab \ltimes) & = & \{\rtimes abab \aleph\} \\ F_{\leq 3}(\rtimes abab \aleph) & = & F_2(\rtimes abab \aleph) \cup \{\rtimes ab, aba, bab, ab \aleph\}. \end{array}$$

k-expressions

Definition 8 (k-expressions)

- If $\varphi = v \in F_{\leq k}(\{\times\} \cdot \Sigma^* \cdot \{\times\})$ then φ is a k-expression over Σ .
- Slide 14
- If $\psi = (\neg \varphi)$ and φ is a k-expression over Σ then ψ is a k-expression over Σ .
- If $\psi = (\varphi_1 \vee \varphi_2)$ and φ_1 and φ_2 are k-expressions over Σ then ψ is a k-expression over Σ .
- Nothing else is a k-expression over Σ .

Definition 9 (Propositional Satisfaction) For W a word model and ψ , a k-expression over Σ :

Slide 15
$$\mathcal{W} \models_{\Sigma} \psi \stackrel{def}{\Longleftrightarrow} \left\{ \begin{array}{l} \psi \ \ \textit{is an atom } v \ \textit{and} \ v \in F_{\leq k}(\rtimes \mathcal{W} \ltimes), \\ \psi \ \ \textit{is} \ \neg \varphi \ \textit{and} \ \mathcal{W} \not\models_{\Sigma} \varphi, \\ \psi \ \ \textit{is} \ \varphi_1 \lor \varphi_2 \ \textit{and either} \ \mathcal{W} \models_{\Sigma} \varphi_1 \ \textit{or} \ \mathcal{W} \models_{\Sigma} \varphi_2 \ \textit{or both}. \end{array} \right.$$

Strictly Local stringsets

Conjunctions of negative atomic constraints

$$\varphi = \neg f_1 \wedge \neg f_2 \wedge \dots \wedge \neg f_n = \bigwedge_{f \in F} [\neg f]$$

Slide 16 Definition 10 (SL)

- L is $SL_k \stackrel{def}{\iff} L(\bigwedge_{f \in F} [\neg f])$ for some $F \subseteq F_k(\{ \bowtie \} \cdot \Sigma^* \cdot \{ \bowtie \})$
- $SL = \bigcup_{0 < i \in \mathbb{N}} [SL_k]$

For all $0 < i \in \mathbb{N}$: $SL_i \subsetneq SL_{i+1}$.

 $\operatorname{Fin} \cup \operatorname{CoFin} \subsetneq \operatorname{SL}, \qquad \operatorname{DEF} \cup \operatorname{RDEF} \subsetneq \operatorname{SL}$

Abstract characterization of SL_k

Lemma 1 (k-Suffix Substitution Closure (SSC)) If $L \in SL_k$ then for all strings u_1 , v_1 , u_2 , and v_2 in Σ^* and all $x \in \Sigma^{k-1}$

Slide 17

$$u_1 \cdot x \cdot v_1 \in L \text{ and } u_2 \cdot x \cdot v_2 \in L \Rightarrow u_1 \cdot x \cdot v_2 \in L.$$

There is no k for which Fin $\subseteq SL_k$.

GDEF $\not\subset$ SL and SL $\not\subset$ GDEF

Closure properties of SL

- SL and SL_k are closed under intersection but not union or complement
- \bullet SL and SL_k are not closed under concatenation
- SL_2 is closed under iteration (Kleene-*).

- \bullet $\mathrm{SL}_{k>2}$ and SL are not closed under iteration
- \bullet SL and SL_k are not closed under alphabetic homomorphism.

$$\{(ab)^i \mid i \in \mathbb{N}\} \in \operatorname{SL}_2$$

$$\{(aa)^i \mid i \in \mathbb{N}\} \not\in \operatorname{SL}$$
 Some- $b \stackrel{\operatorname{def}}{=} \{w \in \{ab\}^* \mid |w|_b > 1\} \not\in \operatorname{SL}$

Locally Testable stringsets

Definition 11 (LT)

- A stringset is LT_k iff it is $L(\varphi)$ for some k-expression φ .
- $LT \stackrel{def}{=} \bigcup_{0 < i \in \mathbb{N}} [LT_i]$

For all $0 < i \in \mathbb{N}$: $LT_i \subseteq LT_{i+1}$.

Slide 19 $\operatorname{SL}_k \subseteq \operatorname{LT}_k$, $\operatorname{SL}_{k+1} \not\subseteq \operatorname{LT}_k \not\subseteq \operatorname{SL}_{k+1}$

Abstract characterization of LT_k

Lemma 2 (k-Test Invariance) A language $L \subseteq \Sigma^*$ is LT_k for some k > 0 if and only if, for all strings $w, v \in \Sigma^*$:

$$(F_k(\rtimes w \ltimes) = F_k(\rtimes v \ltimes)) \Rightarrow (w \in L \Leftrightarrow v \in L).$$

Closure properties of LT

- LT and LT_k are closed under all Boolean operations
- \bullet LT and LT $_k$ are not closed under concatenation

Slide 20 • LT_k and LT are not closed under iteration

 \bullet LT and LT $_k$ are not closed under alphabetic homomorphism.

Some-
$$b \stackrel{\text{def}}{=} \{w \in \{ab\}^* \mid |w|_b > 1\} \in LT_1$$

One- $b \stackrel{\text{def}}{=} \{w \in \{ab\}^* \mid |w|_b = 1\} \not\in LT_1$

UDel 2013

First-order(successor) definable stringsets

Slide 21 Definition 12 (FO(+1)) A stringset is FO(+1) iff it is $L(\varphi)$ for some first-order sentence in which \triangleleft ⁺ does not occur.

Abstract characterization of FO(+1)

Definition 13 A stringset L is (k,t)-Locally Threshold **Testable** $(L \in LTT_{k,t})$ iff whenever $w \equiv_{k,t} v$ then either both w and v are in L or neither are.

Slide 22 Theorem 1 (Thomas'82) A stringset is FO(+1) iff there is some k and t such that it is $LTT_{k,t}$.

 $\mathrm{FO}(+1)$ is not closed under concatenation, iteration or alphabetic homomporphism.

One-
$$b \stackrel{\text{def}}{=} \{w \in \{ab\}^* \mid |w|_b = 1\} \in \text{FO}(+1)$$

No- c -before- $b \stackrel{\text{def}}{=} \text{Some-}b \cdot \{a,b,c\}^* \not \in \text{FO}(+1)$.

UDel 2013

First-order definable stringsets

Slide 23 Definition 14 (FO(<)) A stringset is FO(<) iff it is $L(\varphi)$ for some first-order sentence (in which \triangleleft ⁺ may occur).

 \triangleleft is FO definable from \triangleleft ⁺.

Abstract characterization of FO(<)

Definition 15 A stringset is **non-counting** iff there exists some n > 0 (depending only on the language) such that for all strings $u, v, w \in \Sigma^*$, where $|v| \ge 1$, and for all $i \ge 1$

Slide 24

$$uv^n w \in L \Leftrightarrow uv^{n+i} w \in L.$$

FO(<) is closed under concatenation.

FO(<) is not closed under iteration or alphabetic homomorphism.

No-c-before- $b \stackrel{\text{def}}{=} \text{Some-}b \cdot \{a,b,c\}^* \in \text{FO}(<).$ $\{(aa)^i \mid i \in \mathbb{N}\} \not\in \text{FO}(<).$

Precedence—Subsequences

Definition 16 (Subsequences)

$$v \sqsubseteq w \stackrel{def}{\iff} v = \sigma_1 \cdots \sigma_n \text{ and } w \in \Sigma^* \cdot \sigma_1 \cdot \Sigma^* \cdots \Sigma^* \cdot \sigma_n \cdot \Sigma^*$$

$$P_k(w) \stackrel{def}{=} \{ v \in \Sigma^k \mid v \sqsubseteq w \}$$

$$P_{\leq k}(w) \stackrel{def}{=} \{ v \in \Sigma^{\leq k} \mid v \sqsubseteq w \}$$

Slide 25

$$P_{2}(\sigma \, \sigma \, \dot{\sigma} \, \sigma \, \dot{\sigma} \, \sigma) = \{ \sigma \, \sigma, \sigma \, \dot{\sigma}, \sigma \, \dot{\sigma}, \dot{\sigma} \, \dot{\sigma}, \dot{\sigma} \, \dot{\sigma}, \dot{\sigma} \, \sigma \}$$

$$P_{\leq 2}(\sigma \, \sigma \, \dot{\sigma} \, \sigma \, \dot{\sigma} \, \sigma) = \{ \varepsilon, \sigma, \dot{\sigma}, \dot{\sigma}, \sigma \, \sigma, \sigma \, \dot{\sigma}, \sigma \, \dot{\sigma}, \dot{\sigma} \, \dot{\sigma}, \dot{\sigma} \, \dot{\sigma}, \dot{\sigma} \, \sigma \}$$

Definition 17 (Piecewise Propositional Satisfaction) For W a word model and ψ , a k-expression over Σ :

Slide 26
$$\mathcal{W} \models^{P}_{\Sigma} \psi \overset{def}{\iff} \begin{cases} \psi \text{ is } v \in \Sigma^{k} \text{ and } v \sqsubseteq \mathcal{W}, \\ \psi \text{ is } \neg \varphi \text{ and } \mathcal{W} \not\models^{P}_{\Sigma} \varphi, \\ \psi \text{ is } \varphi_{1} \vee \varphi_{2} \text{ and either } \mathcal{W} \models_{\Sigma} \varphi_{1} \text{ or } \mathcal{W} \models^{P}_{\Sigma} \varphi_{2} \text{ or both.} \end{cases}$$

Strictly Piecewise stringsets

Conjunctions of negative atomic constraints

$$\varphi = \neg f_1 \wedge \neg f_2 \wedge \dots \wedge \neg f_n = \bigwedge_{f \in F} [\neg f]$$

Slide 27 Definition 18 (SP)

- L is $SP_k \stackrel{def}{\Longleftrightarrow} L(\bigwedge_{f \in F} [\neg f])$ for some $F \subseteq \Sigma^{\leq k}$
- $SP = \bigcup_{0 < i \in \mathbb{N}} [SP_k]$

For all $0 < i \in \mathbb{N}$: $SP_i \subsetneq SP_{i+1}$.

Fin, CoFin $\not\subset$ SP

Character of the Strictly k-Piecewise Sets

Theorem 2 A stringset L is Strictly k-Piecewise Testable iff it is closed under subsequence:

$$w\sigma v \in L \Rightarrow wv \in L$$

SP and SP_k , for any k>0, are closed under intersection but not union or complement. SP_k is not closed under concatenation, although SP is.

Piecewise Testable stringsets

Definition 19 (PT)

- A stringset is PT_k iff it is $L(\varphi)$ for some piecewise k-expression φ .
- $PT \stackrel{def}{=} \bigcup_{0 < i \in \mathbb{N}} [PT_i]$

For all $0 < i \in \mathbb{N}$: $PT_i \subsetneq PT_{i+1}$.

Slide 29

 $\operatorname{Fin} \cup \operatorname{CoFin} \subseteq \operatorname{PT}, \quad \operatorname{DEF}, \operatorname{RDEF} \not\subset \operatorname{PT}.$

Abstract characterization of PT_k

Lemma 3 (k-Test Invariance) A language $L \subseteq \Sigma^*$ is PT_k for some k > 0 if and only if, for all strings $w, v \in \Sigma^*$:

$$(P_k(w) = P_k(v)) \Rightarrow (w \in L \Leftrightarrow v \in L).$$

