
AGL Workshop 1

Slide 1

Cognitive Complexity

of Linguistic Patterns

Artificial Grammar Learning Workshop

Max Planck Institute for Psycholinguistics

23–24 November 2010

James Rogers
Dept. of Computer Science

Earlham College

jrogers@cs.earlham.edu

http://cs.earlham.edu/~jrogers/slides/agl.ho.pdf

This work completed, in part, while in residence at the

Radcliffe Institute for Advanced Study

Slide 2

Joint work with:

• Geoffrey K. Pullum

School of Philosophy, Psychology and Language Sciences

University of Edinburgh

• Marc D. Hauser

Depts. of Psychology, Organismic & Evolutionary Biology and

Biological Anthropology

Harvard University

• Jeffery Heinz

Dept. of Linguistics and Cognitive Science

University of Delaware

• Gil Bailey, Matt Edlefsen, Magaret Fero, Molly Visscher, David

Wellcome, Aaron Weeden and Sean Wibel

Dept. of Computer Science

Earlham College

AGL Workshop 2

Slide 3

Cognitive Complexity of Simple Patterns

Sequences of ‘A’s and ‘B’s which end in ‘B’:

S0 −→ AS0, S0 −→ BS0, S0 −→ B

A B B

A

(A+B)∗B

Sequences of ‘A’s and ‘B’s which contain an odd number of ‘B’s:

S0 −→ AS0, S0 −→ BS1, S0 −→ B,

S1 −→ AS1, S1 −→ BS0, S1 −→ A

A B A

B

(A∗BA∗BA∗)∗A∗BA∗

Slide 4

Finite State Automata and Regular Grammars

Y N

State

A A B A B B A A A B A A

A B A

B
S0 S1

S0 −→ AS0, S0 −→ BS1, S0 −→ B,

S1 −→ AS1, S1 −→ BS0, S1 −→ A

AGL Workshop 3

Slide 5

Some More Simple Patterns

Sequences of ‘A’s and ‘B’s which contain at least one ‘B’:

S0 −→ AS0, S0 −→ BS1, S0 −→ B,

S1 −→ AS1, S1 −→ BS1, S1 −→ A, S1 −→ B

A B
A,B

A∗B(A+B)∗

Sequences of ‘A’s and ‘B’s which contain exactly one ‘B’:

S0 −→ AS0, S0 −→ BS1, S0 −→ B,

S1 −→ AS1, S1 −→ A

B
A,B

A B A

A∗BA∗

Slide 6

Cognitive Complexity from First Principles

What kinds of distinctions does a cognitive mechanism need to be

sensitive to (attend to) in order to classify an event with respect to

a pattern?

Reasoning about patterns

• What objects/entities/things are we reasoning about?

• What relationships between them are we reasoning with?

AGL Workshop 4

Slide 7

Some Assumptions about (Proto-)Linguistic

Behaviors

• Perceive/process/generate linear sequence of (sub)events

• Can model as strings—linear sequence of abstract symbols

– Positions—Discrete linear order (initial segment of N).

– Labeled with alphabet of events

Partitioned into subsets, each the set of positions at

which a particular event occurs.

Slide 8

Dual characterizations of complexity classes

Computational classes

• Characterized by abstract computational mechanisms

• Equivalence between mechanisms

• Means to determine structural properties of stringsets

Descriptive classes

• Characterized by the nature of information about the

properties of strings that determine membership

• Independent of mechanisms for recognition

• Subsume wide range of types of patterns

AGL Workshop 5

Slide 9

Local and Piecewise Hierarchies

Fin
Local (+1) Piecewise (<)

SL SP

LT PT

LTT

FO

Reg MSO

Propositional

SF

Restricted Prop.

Slide 10

Stringset inference experiments

AnBn n ≤ 3

AAABBB
F

AnBn

ABABAB
AABBBA

∅
∅

{A,B}∗

I
AmBn 2|(m + n) AmBn

AABBB

|w|
A

= |w|
B

AABBBB

I = {AnBn | n ≥ 1} F = {AAABBB} D =?

AGL Workshop 6

Slide 11

Formal Issues for AGL Experiments

Design

• Identifying relevant classes of patterns

• Finding minimal pairs of stringsets

• Finding sets of stimuli that distinguish those stringsets

Interpretation

• Identifying the class of patterns subject has generalized to

• Inferring the properties of the cognitive mechanism involved

– properties common to all mechanisms capable of identifying

that class of patterns

Slide 12

Inferences from AGL experiments

Subject successfully generalizes a pattern in a given

complexity class:

• Mechanism is sensitive to features characteristic of class.

• Does not imply that subject can generalize every pattern in

that class.

– Other processing factors may interfere.

Subject consistently fails to generalize patterns in a given

class:

• Suggests mechanism is not sensitive to features characteristic of

class.

• Inability to generalize may be due to interfering factors.

– Complexity of patterns properly in class may exceed other

limitations of processing.

AGL Workshop 7

Slide 13

Assumptions

• Inferred set is not arbitrary

• Principle determining membership is structural

• Inference exhibits some sort of minimality

Slide 14

Yawelmani Yokuts (Kissberth’73)

⋆ CCC

Σ∗CCCΣ∗

V C CC CCC

Σ∗V

C
V

C

V

C

CCV CV V CV CCV CV CV CCV CCV V V CV

CCV CV V CV CCC⋆V CV CV CCV CCV V V CV

AGL Workshop 8

Slide 15

Adjacency—Substrings

Definition 1 (k-Factor)

v is a factor of w if w = uvx for some u, v ∈ Σ∗.

v is a k-factor of w if it is a factor of w and |v| = k.

Fk(w)
def
=







{v ∈ Σk | (∃u, x ∈ Σ∗)[w = uvx]} if |w| ≥ k,

{w} otherwise.

Fk(w) is the set of length k substrings (contiguous) of w

(or just w itself if length of w < k).

ABABAB

F2(ABABAB) = {AB,BA}

F7(ABABAB) = {ABABAB}

Slide 16

Strictly Local Stringsets—SL

Strictly k-Local Definitions

G ⊆ Fk({⋊} · Σ∗ · {⋉})

w |= G
def
⇐⇒ Fk(⋊ · w · ⋉) ⊆ G

L(G)
def
= {w | w |= G}

A stringset L is Strictly k-Local iff membership depends

solely on the k-factors that are permitted.

G(AB)n = {⋊A,AB,BA,B⋉}

⋉ ⋉⋊ ⋊ABABAB ABBAB

*

Membership in an SLk stringset depends only on the individual

k-factors which actually occur in the string.

AGL Workshop 9

Slide 17

Scanners

QD

a b a b a b a b a babababa

k k

b

a

a

∈
φ

a

b

b

· · ·

· · ·

· · ·

· · ·

· · ·

k

a · · · b· · ·

G :

Recognizing an SLk stringset requires only remembering the k most

recently encountered symbols.

Slide 18

Character of Strictly k-Local Sets

Theorem (Suffix Substitution Closure):

A stringset L is strictly k-local iff whenever there is a string x of

length k − 1 and strings w, y, v, and z, such that

w ·

k−1
︷︸︸︷
x · y ∈ L

v · x · z ∈ L

then it will also be the case that

w · x · z ∈ L

AGL Workshop 10

Slide 19

Examples of Suffix Substitution

The dog · likes · the biscuit ∈ L

Alice · likes · Bob ∈ L

The dog · likes · Bob ∈ L

But:

The dog · likes · the biscuit ∈ L

Bob, Alice · likes · ε ∈ L

⋆The dog · likes · ε 6∈ L

Slide 20

SL Hierarchy

Definition 2 (SL)

A stringset is Strictly k-Local if it is definable with an SLk

definition.

A stringset is Strictly Local (in SL) if it is SLk for some k.

Theorem 1 (SL-Hierarchy)

SL2 (SL3 (· · · (SLi (SLi+1 (· · · (SL

Every Finite stringset is SLk for some k: Fin ⊆ SL.

There is no k for which SLk includes all Finite languages.

AGL Workshop 11

Slide 21

Alawa

2

1

0

4

3

σ́

σ

σ

σ

σ

σ́

⋊σ σ σ́σ⋉

⋊σ́ σ ⋉

⋆ ⋊σ σ ⋉

GAlawa = { ⋊σσ, ⋊σσ́, ⋊σ́σ,

σσσ, σσσ́, σσ́σ,

⋊σ́⋉, σ́σ⋉ }

Slide 22

Some syllable must get primary stress

1

0 σ

σ, σ́

σ́

⋊σ1

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 σ́2⋉

⋊σ́2

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 σ1⋉

⋆ ⋊σ1

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 σ1⋉

AGL Workshop 12

Slide 23

Cognitive interpretation of SL

• Any cognitive mechanism that can distinguish member strings

from non-members of an SLk stringset must be sensitive, at

least, to the length k blocks of events that occur in the

presentation of the string.

• If the strings are presented as sequences of events in time, then

this corresponds to being sensitive, at each point in the string,

to the immediately prior sequence of k − 1 events.

• Any cognitive mechanism that is sensitive only to the length k

blocks of events in the presentation of a string will be able to

recognize only SLk stringsets.

Slide 24

Strictly Local Stress Patterns

Heinz’s Stress Pattern Database (ca. 2007)—109 patterns

9 are SL2 Abun West, Afrikans, . . . Cambodian,. . .

Maranungku

44 are SL3 Alawa, Arabic (Bani-Hassan),. . .

24 are SL4 Arabic (Cairene),. . .

3 are SL5 Asheninca, Bhojpuri, Hindi (Fairbanks)

1 is SL6 Icua Tupi

28 are not SL Amele, Bhojpuri (Shukla Tiwari), Ara-

bic Classical, Hindi (Keldar), Yidin,. . .

72% are SL, all k ≤ 6. 49% are SL3.

AGL Workshop 13

Slide 25

Probing the SL boundary

(AB)n = L({⋊A,AB,BA,B⋉}) ∈ SL2

Some-B
def
= {w ∈ {A,B}∗ | |w|B ≥ 1} 6∈ SL

A . . .A · A . . .A
︸ ︷︷ ︸

k−1

· BA . . .A ∈ Some-B

A . . .AB · A . . .A
︸ ︷︷ ︸

k−1

· A . . .A ∈ Some-B

A . . .A · A . . .A
︸ ︷︷ ︸

k−1

· A . . .A 6∈ Some-B

In Out

SL (AB)n (AB)i+j+1 (AB)iAA(AB)j

AmBn Ai+kBj+l AiBjAkBl

non-SL Some-B AiBAj Ai+j+1

Slide 26

Locally k-Testable Stringsets

Boolean combinations of SLk stringsets

k-Expressions

f ∈ Fk(⋊ · Σ∗ · ⋉) w |= f
def
⇐⇒ f ∈ Fk(⋊ · w · ⋉)

ϕ ∧ ψ w |= ϕ ∧ ψ
def
⇐⇒ w |= ϕ and w |= ψ

¬ϕ w |= ¬ϕ
def
⇐⇒ w 6|= ϕ

Locally k-Testable Languages (LTk):

L(ϕ)
def
= {w ∈ Σ∗ | w |= ϕ}

Some-B = L(⋊B ∨AB) (= L(¬(¬⋊B ∧ ¬AB)))

LT stringsets are those definable in Propositional Logic

with k-factors as atomic formulae.

Membership in an LTk stringset depends only on the

set of k-Factors which occur in the string.

AGL Workshop 14

Slide 27

LT Automata

a

b

ba

b a

b b

a

b

aa

φ

Boolean
Network

a b a b a b a b a babababa

a a b b

Recognizing an LTk stringset requires only remembering

which k-factors occur in the string.

Slide 28

Character of Locally Testable sets

Theorem 2 (k-Test Invariance) A stringset L is Locally

Testable iff

there is some k such that, for all strings x and y,

if ⋊ · x ·⋉ and ⋊ · y ·⋉ have exactly the same set of k-factors

then either both x and y are members of L or neither is.

w ≡L
k v

def
⇐⇒ Fk(⋊w⋉) = Fk(⋊v⋉).

LTk stringsets do not distinguish strings that have the

same set of k-factors.

AGL Workshop 15

Slide 29

LT Hierarchy

Definition 3 (LT)

A stringset is k-Locally Testable if it is definable with an

LTk-expression.

A stringset is Locally Testable (in LT) if it is LTk for some k.

Theorem 3 (LT-Hierarchy)

LT2 (LT3 (· · · (LTi (LTi+1 (· · · (LT

Slide 30

Examples of k-Test Invariance

Some syllable gets primary stress is LT1

w ∈ Some-σ́ ⇔ σ́ ∈ F1(⋊·w·⋉) Some-σ́ = {w ∈ {A,B}∗ | w |= σ́}

No more than one syllable gets primary stress is not LT

(not LTk for any k)

Fk(⋊ ·

k−1
︷ ︸︸ ︷
σ · · ·σ · σ́ ·

k−1
︷ ︸︸ ︷
σ · · ·σ ·⋉)

= Fk(⋊ ·

k−1
︷ ︸︸ ︷
σ · · ·σ · σ́ ·

k−1
︷ ︸︸ ︷
σ · · ·σ · σ́ ·

k−1
︷ ︸︸ ︷
σ · · ·σ ·⋉)

But
k−1

︷ ︸︸ ︷
σ · · ·σ · σ́ ·

k−1
︷ ︸︸ ︷
σ · · ·σ ∈ OnlyOne-σ́

k−1
︷ ︸︸ ︷
σ · · ·σ · σ́ ·

k−1
︷ ︸︸ ︷
σ · · ·σ · σ́ ·

k−1
︷ ︸︸ ︷
σ · · ·σ 6∈ OnlyOne-σ́

AGL Workshop 16

Slide 31

Cognitive interpretation of LT

• Any cognitive mechanism that can distinguish member strings

from non-members of an LTk stringset must be sensitive, at

least, to the set of length k blocks of events that occur in the

presentation of the string—both those that do occur and those

that do not.

• If the strings are presented as sequences of events in time, then

this corresponds to being sensitive, at each point in the string,

to the length k blocks of events that occur at any prior point.

• Any cognitive mechanism that is sensitive only to the set of

length k blocks of events in the presentation of a string will be

able to recognize only LTk stringsets.

Slide 32

Probing the LT boundary

Some-B = L(⋊B ∨AB) ∈ LT2

One-B
def
= {w ∈ {A,B}∗ | |w|B = 1} 6∈ LT

AkBAk ∈ One-B AkBAkBAk 6∈ One-B

Fk(⋊AkBAk⋉) = Fk(⋊AkBAkBAk⋉)

In Out

LT Some-B AiBAj Ai+j+1

non-LT One-B AiBAj+k+1 AiBAjBAk

AGL Workshop 17

Slide 33

FO(+1) (Strings)

Models: 〈D, ⊳, Pσ〉σ∈Σ

AABA =
D

{0, 1, 2, 3}, {〈i, i + 1〉 | 0 ≤ i < 3}, {0, 1, 3}A, {2}B

E

First-order Quantification (over positions in the strings)

x ⊳ y w, [x 7→ i, y 7→ j] |= x ⊳ y
def
⇐⇒ j = i+ 1

Pσ(x) w, [x 7→ i] |= Pσ(x)
def
⇐⇒ i ∈ Pσ

ϕ ∧ ψ
...

¬ϕ
...

(∃x)[ϕ(x)] w, s |= (∃x)[ϕ(x)]
def
⇐⇒ w, s[x 7→ i] |= ϕ(x)]

for some i ∈ D

FO(+1)-Definable Stringsets: L(ϕ)
def
= {w | w |= ϕ}.

One-σ́ = L((∃x)[σ́(x) ∧ (∀y)[σ́(y) → x ≈ y]])

Slide 34

LTT Automata

a a b b

a b a a a b a b a bbababab

Boolean
Network

φ

a

b

aa

ba

b a

b b

a

b

X

X X

X X

X

X

X

X

X

X

AGL Workshop 18

Slide 35

Character of the FO(+1) Definable Stringsets

Definition 4 (Locally Threshold Testable) A set L is Locally

Threshold Testable (LTT) iff there is some k and t such that, for

all w, v ∈ Σ∗:

if for all f ∈ Fk(⋊ · w · ⋉) ∪ Fk(⋊ · v · ⋉)

either |w|f = |v|f or both |w|f ≥ t and |v|f ≥ t,

then w ∈ L ⇐⇒ v ∈ L.

Theorem 4 (Thomas) A set of strings is First-order definable

over 〈D, ⊳, Pσ〉σ∈Σ iff it is Locally Threshold Testable.

Membership in an FO(+1) definable stringset depends

only on the multiplicity of the k-factors which occur

in the string, up to some fixed finite threshold t.

Slide 36

Examples of Local Threshold Testability

One-σ́ is LTT1,2

w ∈ One-σ́ ⇔ |w|σ́ = 1 (and not |w|σ́ ≥ 2)

First heavy syllable gets primary stress is not LTT (LTTk,t

for any k or t)

Fk(⋊ ·

k−1
︷ ︸︸ ︷

L · · ·L · H́ ·

k−1
︷ ︸︸ ︷

L · · ·L ·H ·

k−1
︷ ︸︸ ︷

L · · ·L ·⋉)

= Fk(⋊ ·

k−1
︷ ︸︸ ︷

L · · ·L ·H ·

k−1
︷ ︸︸ ︷

L · · ·L · H́ ·

k−1
︷ ︸︸ ︷

L · · ·L ·⋉)

AGL Workshop 19

Slide 37

Another example of non-LTT

There must be an even number of heavy syllables 6∈ LTT

|⋊ ·

k−1
︷ ︸︸ ︷

L · · ·L ·H
︸ ︷︷ ︸

t

·

k−1
︷ ︸︸ ︷

L · · ·L ·⋉|H ≥ t

|⋊ ·

k−1
︷ ︸︸ ︷

L · · ·L ·H
︸ ︷︷ ︸

t

·

k−1
︷ ︸︸ ︷

L · · ·L ·H ·

k−1
︷ ︸︸ ︷

L · · ·L ·⋉|H ≥ t

But
k−1

︷ ︸︸ ︷

L · · ·L ·H
︸ ︷︷ ︸

t

·

k−1
︷ ︸︸ ︷

L · · ·L ∈ Even-H

⇔
k−1

︷ ︸︸ ︷

L · · ·L ·H
︸ ︷︷ ︸

t

·

k−1
︷ ︸︸ ︷

L · · ·L ·H ·

k−1
︷ ︸︸ ︷

L · · ·L 6∈ Even-H

Slide 38

Cognitive interpretation of FO(+1)

• Any cognitive mechanism that can distinguish member strings

from non-members of an FO(+1) stringset must be sensitive, at

least, to the multiplicity of the length k blocks of events, for

some fixed k, that occur in the presentation of the string,

distinguishing multiplicities only up to some fixed threshold t.

• If the strings are presented as sequences of events in time, then

this corresponds to being able count up to some fixed threshold.

• Any cognitive mechanism that is sensitive only to the

multiplicity, up to some fixed threshold, (and, in particular, not

to the order) of the length k blocks of events in the presentation

of a string will be able to recognize only FO(+1) stringsets.

AGL Workshop 20

Slide 39

Probing the FO(+1) boundary

One-B = L((∃x)[B(x) ∧ (∀y)[B(y) → x ≈ y]]) ∈ LTT

No-B-after-C
def
= {w ∈ {A, B, C}∗ | no B follows any C} 6∈ LTT

AkBAkCAk and AkCAkBAk have exactly the same number of

occurrences of every k-factor.

In Out

FO(+1) One-B AiBAj+k+1 AiBAjBAk

non-FO(+1) No-B-after-C AiBAjCAk AiCAjBAk

AiBAjBAk

AiCAjCAk

Slide 40

Long-Distance Dependencies

Sarcee sibilant harmony:

[-anterior] sibilants do not occur after [+anterior] sibilants

a. /si-tSiz-aP/ → S��tS��dz�aP ‘my duck’

b. /na-s-GatS/ → n	aSG�atS ‘I killed them again’

c. cf. ⋆s��tS��dz�aP
Σ∗ · [+] · Σ∗ · [-] · Σ∗

Samala (Chumash) sibilant harmony:

[-anterior] sibilants do not occur in the same word as [+anterior]

sibilants

[StojonowonowaS] ‘it stood upright’ *[Stojonowonowas]
(Σ∗ · [+] · Σ∗ · [-] · Σ∗) + (Σ∗ · [-] · Σ∗ · [+] · Σ∗)

AGL Workshop 21

Slide 41

Complexity of Sibilant Harmony

(Samala and Sarcee)

Symmetric sibilant harmony is LT

¬([+] ∧ [−])

Asymmetric sibilant harmony is not FO(+1)

⋊w [−] w [+] w⋉

≡L
k,t

⋆ ⋊w [−] w [+] w [−] w⋉

Slide 42

Precedence—Subsequences

Definition 5 (Subsequences)

v ⊑ w
def
⇐⇒ v = σ1 · · ·σn and w ∈ Σ∗ · σ1 · Σ

∗ · · ·Σ∗ · σn · Σ∗

Pk(w)
def
= {v ∈ Σk | v ⊑ w}

P≤k(w)
def
= {v ∈ Σ≤k | v ⊑ w}

P≤k(w) is the set of subsequences (not necessarily

contiguous) of length ≤ k occurring in w.

A A B A C A
AA, AB, BA, AC, CA
AB, AA, BC
AA, AC, BA
AC, AA
AA

P2(AABACA) = {AA,AB,AC,BA,BC,CA}

P≤2(AABACA) = {ε,A,B,C,AA,AB,AC,BA,BC,CA}

AGL Workshop 22

Slide 43

Strictly Piecewise Stringsets—SP

Strictly k-Piecewise Definitions

G ⊆ Σ≤k

w |= G
def
⇐⇒ P≤k(w) ⊆ P≤k(G)

L(G)
def
= {w ∈ Σ∗ | w |= G}

GNo-B-after-C = {AA,AB,AC,BA,BB,BC,CA,CC}

A A B A C A A A A AC B
*

Membership in an SPk stringset depends only on the

individual (≤ k)-subsequences which occur in the

string.

Slide 44

Character of the Strictly k-Piecewise Sets

Theorem 5 A stringset L is Strictly k-Piecewise Testable iff, for

all w ∈ Σ∗,

P≤k(w) ⊆ P≤k(L) ⇒ w ∈ L

Consequences:

Prefix & Suffix Closure: wv ∈ L⇒ w, v ∈ L

Subsequence Closure: wσv ∈ L⇒ wv ∈ L

Unit Strings: P1(L) ⊆ L

Empty String: L 6= ∅ ⇒ ε ∈ L

A stringset L is SPk iff every subsequence of any string in

L is also in L.

AGL Workshop 23

Slide 45

SP Hierarchy

Definition 6 (SP)

A stringset is Strictly k-Piecewise if it is definable with an SPk

definition.

A stringset is Strictly Piecewise (in SP) if it is SPk for some k.

Theorem 6 (SP-Hierarchy)

SP2 (SP3 (· · · (SPi (SPi+1 (· · · (SP

SP is incomparable (wrt subset) with the Local Hierarchy

SP2 6⊆ FO(+1) No-B-after-C ∈ SP2 −FO(+1)

SL2 6⊆ SP (AB)n ∈ SL2 −SP

SP2 ∩ SL2 6= ∅ AmBn ∈ SP2 ∩ SL2

Fin 6⊆ SP {A} ∈ Fin− SP

Slide 46

Cognitive interpretation of SP

• Any cognitive mechanism that can distinguish member strings

from non-members of an SPk stringset must be sensitive, at

least, to the length k (not necessarily consecutive) sequences of

events that occur in the presentation of the string.

• If the strings are presented as sequences of events in time, then

this corresponds to being sensitive, at each point in the string,

to up to k − 1 events distributed arbitrarily among the prior

events.

• Any cognitive mechanism that is sensitive only to the length k

sequences of events in the presentation of a string will be able

to recognize only SPk stringsets.

AGL Workshop 24

Slide 47

Probing the SP boundary

No-B-after-C ∈ SP2

B-before-C
def
= {w ∈ Σ∗ | Some B occurs prior to any C} 6∈ SP

AABACA ∈ B-before-C, AACA ⊑ AABACA, AACA 6∈ B-before-C

In Out

SP No-B-after-C AiBAjCAk AiCAjBAk

AiBAjBAk

AiCAjCAk

AmBn Ai+kBj+l AiBjAkBl

non-SP B-before-C AiBAjCAk AiCAjBAk

AiCAjCAk

(AB)n (AB)i+j+1 (AB)iAA(AB)j

Slide 48

No more than one syllable gets primary stress

0

1

3

σ

σ́

σ́

σ, σ́

σ

⋊

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 σ́1

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 ⋉

≡L
k

⋊

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 σ́1

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 σ́1

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 ⋉

{σ́σ́}

NoMoreThanOne-B ∈ {SP−LT}

AGL Workshop 25

Slide 49

Exactly one syllable gets primary stress, reprise

0

1

3

σ

σ́

σ́

σ, σ́

σ

⋊

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 σ́1

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 ⋉

≡L
k

⋊

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 σ́1

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 σ́1

k−1
︷ ︸︸ ︷
σ0 · · ·σ0 ⋉

σ̀σ̀ ⊑ σ̀σ́σ̀

One-B 6∈ LT One-B 6∈ SP

Some-B ∈ LT NoMoreThanOne-B ∈ SP

One-B = Some-B ∩ NoMoreThanOne-B

One-B is the co-occurence of LT and SP constraints.

Slide 50

k-Piecewise Testable Stringsets

PTk-expressions

p ∈ Σ≤k w |= p
def
⇐⇒ p ⊑ w

ϕ ∧ ψ w |= ϕ ∧ ψ
def
⇐⇒ w |= ϕ and w |= ψ

¬ϕ w |= ¬ϕ
def
⇐⇒ w 6|= ϕ

k-Piecewise Testable Languages (PTk):

L(ϕ)
def
= {w ∈ Σ∗ | w |= ϕ}

B-before-C = L(¬C ∨BC) (= L(C → BC))

Membership in a PTk stringset depends only on the set

of (≤ k)-subsequences which occur in the string.

AGL Workshop 26

Slide 51

Character of Piecewise Testable sets

Theorem 7 (k-Subsequence Invariance) A stringset L is

Piecewise Testable iff

there is some k such that, for all strings x and y,

if x and y have exactly the same set of (≤ k)-subsequences

then either both x and y are members of L or neither is.

w ≡P
k v

def
⇐⇒ P≤k(w) = P≤k(v).

B-before-C =
⋃

{[w]P2 | w ∈ {A,B}∗, w |= (C → BC) and |w| ≤ 6}.

PTk stringsets do not distinguish strings that have the

same set of (≤ k)-subsequences.

Slide 52

PT Hierarchy

Definition 7 (SP)

A stringset is k-Piecewise Testable if it is definable with an PTk

definition.

A stringset is Piecewise Testable (in PT) if it is PTk for some k.

Theorem 8 (PT-Hierarchy)

PT2 (PT3 (· · · (PTi (PTi+1 (· · · (PT

AGL Workshop 27

Slide 53

PT, SP and the Local Hierarchy

SPk (PTk

SPk+1 6⊆ PTk

PT2 6⊆ SP B-before-C,One-B ∈ PT2 − SP

PT2 6⊆ FO(+1) No-B-after-C ∈ PT2 −FO(+1)

SL2 6⊆ PT (AB)n ∈ SL2 −PT

PT2 ∩ SL2 6= ∅ AmBn ∈ PT2 ∩ SL2

Fin ⊆ SP :

Σ∗ = L(ε), ∅ = L(¬ε), {ε} = L(
∧

σ∈Σ

[¬σ]),

{w} = L(w ∧
∧

p∈Σ|w|+1

[¬p])

{w1, . . . , wn} = L(
∨

1≤i≤n

[wi ∧
∧

p∈Σ|wi|+1

[¬p]])

Slide 54

Cognitive interpretation of PT

• Any cognitive mechanism that can distinguish member strings

from non-members of an PTk stringset must be sensitive, at

least, to the set of length k subsequences of events that occur

in the presentation of the string—both those that do occur and

those that do not.

• If the strings are presented as sequences of events in time, then

this corresponds to being sensitive, at each point in the string,

to the set of all length k subsequences of the sequence of prior

events.

• Any cognitive mechanism that is sensitive only to the set of

length k subsequences of events in the presentation of a string

will be able to recognize only PTk stringsets.

AGL Workshop 28

Slide 55

Probing the PT boundary

B-before-C,One-B ∈ PT2

(AB)n 6∈ PT

(AB)k ∈ (AB)n (AB)kA 6∈ (AB)n

Pk((AB)kA) = Pk((AB)k)

In Out

PT B-before-C AiBAjCAk AiCAjBAk

AiCAjCAk

One-B AiBAj+k+1 AiBAjBAk

non-PT (AB)n (AB)i+j+1 (AB)iAA(AB)j

Slide 56

First-Order(<) definable stringsets

〈D, ⊳+, Pσ〉σ∈Σ

First-order Quantification over positions in the strings

x ⊳+ y w, [x 7→ i, y 7→ j] |= x ⊳+ y
def
⇐⇒ i < j

Pσ(x) w, [x 7→ i] |= Pσ(x)
def
⇐⇒ i ∈ Pσ

ϕ ∧ ψ
...

¬ϕ
...

(∃x)[ϕ(x)] w, s |= (∃x)[ϕ(x)]
def
⇐⇒ w, s[x 7→ i] |= ϕ(x)]

for some i ∈ D

AGL Workshop 29

Slide 57

PT, FO(+1) and FO(<)

Theorem 9 PT (FO(<).

σ1 · · ·σn ⊑ w ⇔ (∃x1, . . . , xn)[
∧

1≤i<j≤n

[xi ⊳
+ xj] ∧

∧

1≤i≤n

[Pσi
(xi)]

Theorem 10 FO(+1) (FO(<).

+1 is FO definable from <:

x ⊳ y ≡ x ⊳+ y ∧ ¬(∃z)[x ⊳+ z ∧ z ⊳+ y]

No-B-after-C ⊆ FO(<)−FO(+1)

(AB)n ⊆ FO(<)−PT

Slide 58

Star-Free stringsets

Definition 8 (Star-Free Set) The class of Star-Free Sets (SF)

is the smallest class of languages satisfying:

• Fin ⊆ SF.

• If L1, L2 ∈ SF then: L1 · L2 ∈ SF,

L1 ∪ L2 ∈ SF,

L1 ∈ SF.

Theorem 11 (McNauthton and Papert) A set of strings is

First-order definable over 〈D, ⊳+, Pσ〉σ∈Σ iff it is Star-Free.

AGL Workshop 30

Slide 59

PT and LT with Order

ϕ • ψ w |= ϕ • ψ
def
⇐⇒ w = w1 · w2, w1 |= ϕ and w2 |= ψ.

LTOk is LTk plus ϕ • ψ

No-B-after-C = L((¬C) • (¬B)) ∈ LTO

PTOk is PTk plus ϕ • ψ

Let:

ϕA=i = Ai ∧
∧

p∈Σi+1

[¬p], ϕΣ∗ = ε

Then:

(AB)n = L(¬(ϕB=1 • ϕΣ∗) ∧ ¬(ϕΣ∗ • ϕA=1)∧

¬(ϕΣ∗ • ϕA=2 • ϕΣ∗) ∧ ¬(ϕΣ∗ • ϕB=2 • ϕΣ∗)) ∈ PTO

Slide 60

PTO, LTO and SF

Theorem 12

PTO = SF = LTO

SF ⊆ PTO, SF ⊆ LTO

Fin ⊆ PTO, Fin ⊆ LTO and both are closed under concatenation,

union and complement.

LTO ⊆ PTO ⊆ SF

Concatenation is FO(<) definable.

AGL Workshop 31

Slide 61

Character of FO(<) definable sets

Theorem 13 (McNaughton and Papert) A stringset L is

definable by a set of First-Order formulae over strings iff it is

recognized by a finite-state automaton that is non-counting (that

has an aperiodic syntactic monoid), that is, iff:

there exists some n > 0 such that

for all strings u, v, w over Σ

if uvnw occurs in L

then uvn+iw, for all i ≥ 1, occurs in L as well.

E.g.

people who were left (by people who were left)n left ∈ L

people who were left (by people who were left)n+1 left ∈ L

Slide 62

Cognitive interpretation of FO(<)

• Any cognitive mechanism that can distinguish member strings

from non-members of an FO(<) stringset must be sensitive, at

least, to the sets of length k blocks of events, for some fixed k,

that occur in the presentation of the string when it is factored

into segments, up to some fixed number, on the basis of those

sets with distinct criteria applying to each segment.

• If the strings are presented as sequences of events in time, then

this corresponds to being able to count up to some fixed

threshold with the counters being reset some fixed number of

times based on those counts.

• Any cognitive mechanism that is sensitive only to the sets of

length k blocks of events in the presentation of a string once it

has been factored in this way will be able to recognize only

FO(<) stringsets.

AGL Workshop 32

Slide 63

Probing the FO(<) boundary

BB-before-C ∈ FO(<)

Even-B
def
= {w ∈ {A, B}∗ | |w|B = 2i, 0 ≤ i} 6∈ FO(<)

AiBnBn ∈ Even-B but AiBn+1Bn 6∈ Even-B

In Out

FO(<) BB-before-C AiBBAj+kCAl AiCAj+kBBAl

AiBAjBAkCAl

non-FO(<) Even-B B2i B2i+1

Slide 64

MSO definable stringsets

〈D, ⊳, ⊳+, Pσ〉σ∈Σ

First-order Quantification (positions)

Monadic Second-order Quantification (sets of positions)

⊳+ is MSO-definable from ⊳.

AGL Workshop 33

Slide 65

MSO example

(∃X0, X1)[(∀x)[(∃y)[y ⊳ x] ∨X0(x)] ∧

(∀x, y)[¬(X0(x) ∧X1(x))] ∧

(∀x, y)[x ⊳ y → (X0(x) ↔ X1(y)] ∧

(∀x)[(∃y)[x ⊳ y] ∨X1(x)]]

X0 X0 X0

X1X1X1

a b b a b a

Slide 66

Theorem 14 (Chomsky Schützenberger) A set of strings is

Regular iff it is a homomorphic image of a Strictly 2-Local set.

Definition 9 (Nerode Equivalence) Two strings w and v are

Nerode Equivalent with respect to a stringset L over Σ (denoted

w ≡L v) iff for all strings u over Σ, wu ∈ L⇔ vu ∈ L.

Theorem 15 (Myhill-Nerode) A stringset L is recognizable by a

FSA (over strings) iff ≡L partitions the set of all strings over Σ

into finitely many equivalence classes.

Theorem 16 (Medvedev, Büchi, Elgot) A set of strings is

MSO-definable over 〈D, ⊳, ⊳+, Pσ〉σ∈Σ iff it is regular.

Theorem 17 MSO = ∃MSO over strings.

AGL Workshop 34

Slide 67

Local and Piecewise Hierarchies

Fin
Local (+1) Piecewise (<)

SL SP

LT PT

LTT

FO

Reg MSO

Propositional

SF

Restricted Prop.

Slide 68

Cognitive interpretation of Finite-state

• Any cognitive mechanism that can distinguish member strings

from non-members of a finite-state stringset must be capable of

classifying the events in the input into a finite set of abstract

categories and are sensitive to the sequence of those categories.

• Subsumes any recognition mechanism in which the amount of

information inferred or retained is limited by a fixed finite

bound.

• Any cognitive mechanism that has a fixed finite bound on the

amount of information inferred or retained in processing

sequences of events will be able to recognize only finite-state

stringsets.

AGL Workshop 35

Slide 69

Probing the FS boundary

Even-B
def
= {w ∈ {A,B}∗ | |w|B = 2i, 0 ≤ i} ∈ FS

{AnBn | n > 0} 6∈ FS

w ≡AnBn v ⇔ w, v 6∈ {AiBj | i, j ≥ 0} or

|w|A − |w|B = |v|A − |v|B .

In Out

FS Even-B B2i B2i+1

non-FS AnBn AnBn An−1Bn+1

Slide 70

Non-FS classes

Additional structure — not finitely bounded

AnBn

D1 = |w|A = |w|B, properly nested

D2 = |w|A = |w|B and |w|C = |w|D, properly nested.

Subregular Hierarchy over Trees

CFG = SL2 < LT < FO(+1) < FO(<) < MSO = FSTA

AGL Workshop 36

Slide 71

FLT support for AGL experiments

Model-theoretic characterizations

– very general methods for describing patterns

– provide clues to nature of cognitive mechanisms

– independent of a priori assumptions

Grammar- and Automata-theoretic characterizations

– provide information about nature of stringsets

– minimal pairs

Sub-regular hierarchies

• broad range of capabilities weaker than human capabilities

• characterizations in terms of plausible cognitive attributes

• relevant as long as generalizations are based on structure of

strings

AGL Workshop 37

References

Beauquier, D., and Jean-Eric Pin. 1991. Languages and scanners. Theoretical Computer
Science 84:3–21.

Büchi, J. Richard. 1960. Weak second-order arithmetic and finite automata. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik 6:66–92.

Chomsky, Noam, and M. P. Schützenberger. 1963. The algebraic theory of context-free lan-
guages. In Computer programming and formal systems, ed. P. Braffort and D. Hirschberg,
Studies in Logic and the Foundations of Mathematics, 118–161. Amsterdam: North-
Holland, 2nd (1967) edition.

Elgot, Calvin C. 1961. Decision problems of finite automata and related arithmetics. Trans-
actions of the American Mathematical Society 98:21–51.

Garćıa, Pedro, and José Ruiz. 1996. Learning k-piecewise testable languages from positive
data. In Grammatical Interference: Learning Syntax from Sentences, ed. Laurent Miclet
and Colin de la Higuera, volume 1147 of Lecture Notes in Computer Science, 203–210.
Springer.

Heinz, Jeffrey. 2007. The inductive learning of phonotactic patterns. Doctoral Dissertation,
University of California, Los Angeles.

Heinz, Jeffrey. 2008. Learning long distance phonotactics. Submitted manuscipt.

Heinz, Jeffrey. to appear. On the role of locality in learning stress patterns. Phonology .

Kontorovich, Leonid, Corinna Cortes, and Mehryar Mohri. 2006. Learning linearly separable
languages. In The 17th International Conference on Algorithmic Learning Theory (ALT
2006), volume 4264 of Lecture Notes in Computer Science, 288–303. Springer, Heidelberg,
Germany.

Lothaire, M., ed. 2005. Applied combinatorics on words . Cambridge University Press, 2nd
edition.

McNaughton, R., and S. Papert. 1971. Counter-free automata. MIT Press.

Perrin, Dominique, and Jean-Eric Pin. 1986. First-Order logic and Star-Free sets. Journal
of Computer and System Sciences 32:393–406.

Rogers, James. 2003. wMSO theories as grammar formalisms. Theoretical Computer Science
293:291–320.

Rogers, James, Jeffery Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher, David Wellcome,
and Sean Wibel. 2009. On languages piecewise testable in the strict sense. In Preproceed-
ings of 11th Meeting on Mathematics of Language. Bielefeld, Germany. To Appear.

Rogers, James, and Geoffrey Pullum. 2007. Aural pattern recognition experiments and the
subregular hierarchy. In Proceedings of 10th Mathematics of Language Conference, ed.
Marcus Kracht, 1–7. University of California, Los Angeles.

Simon, Imre. 1975. Piecewise testable events. In Automata Theory and Formal Languages:
2nd Grammatical Inference conference, 214–222. Berlin ; New York: Springer-Verlag.

Thomas, Wolfgang. 1982. Classifying regular events in symbolic logic. Journal of Computer
and Systems Sciences 25:360–376.

