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The Comparative Approach to Language
Evolution

e Shared vs. unique

Slide 3
— Homologous vs. analogous
e Gradual vs. saltational
e Continuity vs. exaption
Three Hypotheses
1. FLB is strictly homologous to animal communication
Slide 4

2. FLB is a derived, uniquely human adaptation for language

3. Only FLN is uniquely human
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Empirical support for the comparative method

e Across species

Slide 5
e Domains other than (just) communication
e Spontaneous and trained behaviors
Contrasting (AB)" with A"B"
o Finite State vs. Context-Free
e {(ding dong)"} vs. {people” left"}
Slide 6

® US.

{those people who were left(by people who were left)"left}

® US.

{those people who were left(by people who were left)*"left}
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Dual Characterizations of Classes of Patterns

Descriptive characterizations
— Nature of the information about strings
— Independent of mechanism

Slide 7 — Support conclusions about abstract properties of

mechanisms

Grammar- and automata-theoretic characterizations
— Concrete algorithm s
— Support reasoning about the structure of stringsets

— Guide experimental design

Strictly Local Stringsets
2-factors: Gapy» = {xA, AB, BA, Bx}
NN NV N VR
XNABABABx xABBAB KX
N NN

Strictly k-Local Definitions

Slide 8
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Membership in an SLj stringset depends only on the individual
k-factors which do and do not occur in the string.
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Scanners
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Recognizing an SLj, stringset requires only remembering the & most

recently encountered symbols.

Character of Strictly 2-Local Sets

Theorem (Suffix Substitution Closure):
A stringset L is strictly 2-local iff whenever there is a word z and
strings w, y, v, and z, such that

w - x -y €L
v - x - z €L
Slide 10 ¢pep it will also be the case that

w - x - z €L

Example:
The dog - likes - the biscuit € L

Alice - likes - Bob el
The dog - likes - Bob €L
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Probing the SL Boundary

Some-B def {we{A, B} [|w]g > 1}

A...A - A...A .- BA...A € Some-B

——
k—1
A..AB - A...A - A...A € Some-B
——
Slide 11 k-1
A.A - A...A - A. . A ¢ Some-B
——
k—1
In Out
SL | (AB)™ | (AB)"+! | (AB)'AA(AB)’
AmPB™ Aitk pitl A'Bi Ak B!
non-SL | Some-B A'BAJ Artitl

Locally k-Testable Stringsets

Some-B: —(-xBA-AB) (=xBV AB)

k-Expressions

Femia-wx) wkef & remn(owox)
YA wE NP g wEpand wE Y
Slide 12 def
—p wEop = whe

Locally k-Testable Languages (LT}):

(o) ¥ [ w = o}

Membership in an LT}, stringset depends only on the set of
k-Factors which occur in the string.
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LT Automata
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Recognizing an LT}, stringset requires only remembering which
k-factors occur in the string.

Character of Locally Testable Sets

Theorem (k-Test Invariance):
A stringset L is Locally Testable iff
Slide 14
there is some k such that, for all strings x and vy,
if Xx-x-x and X -y - X have exactly the same set of k-factors

then either both x and y are members of L or neither is.
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Probing the LT Boundary

Some-B={w € {A,B}* |wkE xBV AB} (€LTy)

One-B Y {w e (4, B} | |u|, =1} ¢ LT

Slide 15 A¥BA* € One-B A¥BA*BAF & One-B
Fi(xA*BA*x) = F,(xA*BAF BAF )

In Out
LT | Some-B A'BAI Aitit+l
non-LT | One-B | A*BAI*tk+1 | A'BATBAF

FO(+1) (Strings)
AABA £ (Va)lA(z) V B(2)] A (32)[B(2)]

<D7<]7 PO‘>0‘€E
AABA = <{07 1,2,3}, {(,i+1) | 0<i< 3}, {0,1,3}4, {2}5 >

First-order Quantification (over positions in the strings)

e ray  wlre iy Ezay i:j» j—i+1
Py () w, [z =i | Pr(z) < i€l
@AY '
@
(F2)[p(2)] w, s = (Jz)[p(2)] el -y, slz — i] | p(z)]

for some 7 € D

FO(+1)-Definable Stringsets: L(¢) def {w | wE ¢}
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Slide 17

Slide 18

Character of the FO(+1) Definable Stringsets

Definition 1 (Locally Threshold Testable) A set L is Locally
Threshold Testable (LTT) iff there is some k and t such that, for
all w,v € ¥*:
if for all f € Fi(x-w - x)U F(x-v-X)
either |w|, = |v|; or both |w|; >t and |v|; > ¢,

thenw e L <— v € L.

Theorem 1 (Thomas) A set of strings is First-order definable
over (D, <, P,)sex iff it is Locally Threshold Testable.

Membership in an FO(+1) definable stringset depends only on the
multiplicity of the k-factors, up to some fixed finite threshold,
which occur in the string.

Probing the LTT Boundary

One-B = {w € {4, B}" | w = (J)[B(x) A (vy)[B(y) — & ~ y]]}(€ LIT)

B-before-C def {w € {A, B,C}" | at least one B precedes any C} ¢ LTT
ARBAFCA* and A*CA* BA* have exactly the same number of

occurrences of every k-factor.

In Out
LTT One-B AtBAITETL | AiB AT B AR
non-LTT | B-before-C | A'BAICA* | A'C AI BAF
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FO(<) (Strings)

ABACA |= (32)[ C(x) — (3y)[B(y) Ay <" a] ]
<Da <, <]+7 PU>U€E

First-order Quantification over positions in the strings

T4y w, [z —iy—jlEx<qy g j=i+1
Slide 19 2aty  wlpiy—jllaay S o
P, (x) w g i EPye) 4L iep,
AP '
—p
(32)[p(@)] w,s b @le@)] L w sl —i] | o@)]

for some 7 € D

Locally Testable with Order (LTOy)

LTy plus

perp w|:<,00¢gw:w1-w2, wy = ¢ and wy = 9.
B-before-C:  (xBV ABe xCV AC)V ~(xC Vv AC V BC)

Definition 2 (Star-Free Set) The class of Star-Free Sets (SF)
Slide 20 s the smallest class of languages satisfying:

e ) € SF, {e} € SF, and {o} € SF for each o € .
o [f Li,Ls € SF then: Ly-Ly € SF,

L UL, € SF,

L, € SF.

Theorem 2 (McNauthton and Papert) A set of strings is
First-order definable over (D, <,<7, Py)oex iff it is Star-Free.

10
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Character of FO(<) Definable Sets

Theorem (McNaughton and Papert):

A stringset L is definable by a set of First-Order formulae over
strings iff it is recognized by a finite-state automaton that is
non-counting (that has an aperiodic syntactic monoid), that is, iff:

there exists some n > 0 such that
Slide 21 for all strings u, v, w over X
if uv™w occurs in L
then uv™w, for all i > 1, occurs in L as well.
E.g.

those people who were left (by people who were left)" left € L

those people who were left (by people who were left)" ™" left ¢ L

A Characterization via ANNs

Binary valued Artificial Neural Nets
Buzzer-free: no inhibitory feedback.

Almost loop-free: no loops including more than one neuron or
delay greater than one.

Slide 22

Theorem (McNaughton and Papert):
A stringset L is definable by a set of First-Order formulae over
strings iff it is representable by a buzzer-free, almost loop-free ANN.

11
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Probing the LT0 Boundary

B-before-C = {w € {4, B} | w E (3z)[C(z) — (Jy)[B(y)Ay < z]]}(€ LTO)

Even-B % {w € {4, B)" | |ul, = 20, 0 < i} ¢ LTT

Slide 23
A'B"B"™ € Even-B  but A'B""!'B" ¢ Even-B
In Out
LTO | B-before-C | AIBAICA* | A'C AT BA*
non-LTO Even-B B% B2itl
MSO (Strings)
<D7<]7<]+7PG'>G'EE
Slide 24 First-order Quantification (positions)

Monadic Second-order Quantification (sets of positions)

<t is MSO-definable from <.
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MSO Example

(FXo)[  (V2)[(Fy)[y < =] V Xo(2)] A
(Va,y)[z 9y — (Xo(z) < ~(Xo(y))] A
Slide 25 (V2)[(Fy) [z < y] V ~(Xo(z))] ]

c|blalb|lc|b

X()YOXOYOXOXO

Theorem 3 (Chomsky Shiitzenberger) A set of strings is
Regular iff it is a homomorphic image of a Strictly 2-Local set.

Definition (Nerode Equivalence) Two strings w and v are
Nerode Equivalent with respect to a stringset L over ¥ (denoted

w =g, v) iff for all strings u over &, wu € L < vu € L.

Slide 26
Theorem 4 (Myhill-Nerode) A stringset L is recognizable by a

FSA (over strings) iff =1, partitions the set of all strings over X

into finitely many equivalence classes.

Theorem 5 (Biichi, Elgot) A set of strings is MSO-definable
over (D,<,<T, P,)oes iff it is reqular.
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Probing the F'S Boundary

Even-B % {w € {4, B} | |ul, = 23, 0 < i} € FS

{A"B" | n >0} ¢ FS

W=pgngn v & w,v g {ABI|i,j>0}or

Slide 27
|w|A - |w|B = |U|A - |U|B-
In Out
FS | Even-B | B?* B?itl
non-FS | A"B™ | A"B" | An—1pntl
Testing A" B"
Slide 28

ABI, 2(i+ )
AABBBB

[w] 4 = |wlp
AABBBA

14
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Context-Free

Additional structure — not finitely bounded
A"B"

D, = |w|, = |w|g, properly nested

Slide 29 Dy = |w|, = |w|g and |w|, = |w|p, properly nested.
Subregular Hierarchy over Trees
CFG=S8Ly, < LT < FO(+1) < FO(<) < MSO =FSTA
Conclusions
FLT support for aural pattern recognition experiments
Model-theoretic characterizations
— very general methods for describing patterns
— provide clues to nature of cognitive mechanisms
— independent of a priori assumptions
Slide 30

Grammar- and Automata-theoretic characterizations
— provide information about nature of stringsets

— minimal pairs

Sub-regular hierarchy

e broad range of capabilities weaker than human capabilities

e characterizations in terms of plausible cognitive attributes

15
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