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We hypothesize that FLN only includes recursion

and is the only uniquely human component of the

faculty of language.

Hauser, Chomsky and Fitch, Nature, v. 298, 2002.
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The Comparative Approach to Language

Evolution

• Shared vs. unique

– Homologous vs. analogous

• Gradual vs. saltational

• Continuity vs. exaption
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Three Hypotheses

1. FLB is strictly homologous to animal communication

2. FLB is a derived, uniquely human adaptation for language

3. Only FLN is uniquely human



RecHul’07 3

Slide 5

Empirical support for the comparative method

• Across species

• Domains other than (just) communication

• Spontaneous and trained behaviors
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Contrasting (AB)n with AnBn

• Finite State vs. Context-Free

• {(ding dong)n} vs. {peoplen leftn}

• vs.

{those people who were left(by people who were left)nleft}

• vs.

{those people who were left(by people who were left)2nleft}
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Dual Characterizations of Classes of Patterns

Descriptive characterizations

– Nature of the information about strings

– Independent of mechanism

– Support conclusions about abstract properties of

mechanisms

Grammar- and automata-theoretic characterizations

– Concrete algorithm s

– Support reasoning about the structure of stringsets

– Guide experimental design
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Strictly Local Stringsets

2-factors: G(AB)n = {oA,AB,BA,Bn}

n nooA ABBABABABB

Strictly k-Local Definitions

G ⊆ Fk({o} · Σ∗ · {n})

w |= G
def
⇐⇒ Fk(o · w · n) ⊆ G

L(G)
def
= {w | w |= G}

Membership in an SLk stringset depends only on the individual

k-factors which do and do not occur in the string.
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Scanners
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Recognizing an SLk stringset requires only remembering the k most

recently encountered symbols.
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Character of Strictly 2-Local Sets

Theorem (Suffix Substitution Closure):

A stringset L is strictly 2-local iff whenever there is a word x and

strings w, y, v, and z, such that

w · x · y ∈ L

v · x · z ∈ L

then it will also be the case that

w · x · z ∈ L

Example:

The dog · likes · the biscuit ∈ L

Alice · likes · Bob ∈ L

The dog · likes · Bob ∈ L
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Probing the SL Boundary

Some-B
def
= {w ∈ {A,B}∗ | |w|B ≥ 1}

A . . . A · A . . .A
︸ ︷︷ ︸

k−1

· BA . . . A ∈ Some-B

A . . . AB · A . . .A
︸ ︷︷ ︸

k−1

· A . . . A ∈ Some-B

A . . . A · A . . .A
︸ ︷︷ ︸

k−1

· A . . . A 6∈ Some-B

In Out

SL (AB)n (AB)i+j+1 (AB)iAA(AB)j

AmBn Ai+kBj+l AiBjAkBl

non-SL Some-B AiBAj Ai+j+1
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Locally k-Testable Stringsets

Some-B: ¬(¬oB ∧ ¬AB) (= oB ∨AB)

k-Expressions

f ∈ Fk(o · Σ∗
n) w |= f

def
⇐⇒ f ∈ Fk(o · w · n)

ϕ ∧ ψ w |= ϕ ∧ ψ
def
⇐⇒ w |= ϕ and w |= ψ

¬ϕ w |= ¬ϕ
def
⇐⇒ w 6|= ϕ

Locally k-Testable Languages (LTk):

L(ϕ)
def
= {w | w |= ϕ}

Membership in an LTk stringset depends only on the set of

k-Factors which occur in the string.
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LT Automata

a

b

ba

b a

b b

a

b

aa

φ

Boolean
Network

a b a b a b a b a babababa

a a b b

Recognizing an LTk stringset requires only remembering which

k-factors occur in the string.
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Character of Locally Testable Sets

Theorem (k-Test Invariance):

A stringset L is Locally Testable iff

there is some k such that, for all strings x and y,

if o · x · n and o · y · n have exactly the same set of k-factors

then either both x and y are members of L or neither is.



RecHul’07 8

Slide 15

Probing the LT Boundary

Some-B = {w ∈ {A,B}∗ | w |= oB ∨AB} (∈ LT2)

One-B
def
= {w ∈ {A,B}∗ | |w|B = 1} 6∈ LT

AkBAk ∈ One-B AkBAkBAk 6∈ One-B

Fk(oAkBAk
n) = Fk(oAkBAkBAk

n)

In Out

LT Some-B AiBAj Ai+j+1

non-LT One-B AiBAj+k+1 AiBAjBAk
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FO(+1) (Strings)

AABA |= (∀x)[A(x) ∨ B(x)] ∧ (∃x)[B(x)]

〈D, /, Pσ〉σ∈Σ

AABA =
D

{0, 1, 2, 3}, {〈i, i + 1〉 | 0 ≤ i < 3}, {0, 1, 3}A, {2}B

E

First-order Quantification (over positions in the strings)

x / y w, [x 7→ i, y 7→ j] |= x / y
def
⇐⇒ j = i+ 1

Pσ(x) w, [x 7→ i] |= Pσ(x)
def
⇐⇒ i ∈ Pσ

ϕ ∧ ψ
...

¬ϕ
...

(∃x)[ϕ(x)] w, s |= (∃x)[ϕ(x)]
def
⇐⇒ w, s[x 7→ i] |= ϕ(x)]

for some i ∈ D

FO(+1)-Definable Stringsets: L(ϕ)
def
= {w | w |= ϕ}.
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Character of the FO(+1) Definable Stringsets

Definition 1 (Locally Threshold Testable) A set L is Locally

Threshold Testable (LTT) iff there is some k and t such that, for

all w, v ∈ Σ∗:

if for all f ∈ Fk(o · w · n) ∪ Fk(o · v · n)

either |w|f = |v|f or both |w|f ≥ t and |v|f ≥ t,

then w ∈ L ⇐⇒ v ∈ L.

Theorem 1 (Thomas) A set of strings is First-order definable

over 〈D, /, Pσ〉σ∈Σ iff it is Locally Threshold Testable.

Membership in an FO(+1) definable stringset depends only on the

multiplicity of the k-factors, up to some fixed finite threshold,

which occur in the string.
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Probing the LTT Boundary

One-B = {w ∈ {A, B}∗ | w |= (∃x)[B(x)∧ (∀y)[B(y) → x ≈ y] ]}(∈ LTT)

B-before-C
def
= {w ∈ {A, B, C}∗ | at least one B precedes any C} 6∈ LTT

AkBAkCAk and AkCAkBAk have exactly the same number of

occurrences of every k-factor.

In Out

LTT One-B AiBAj+k+1 AiBAjBAk

non-LTT B-before-C AiBAjCAk AiCAjBAk
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FO(<) (Strings)

ABACA |= (∃x)[ C(x) → (∃y)[B(y) ∧ y /+ x] ]

〈D, /, /+, Pσ〉σ∈Σ

First-order Quantification over positions in the strings

x / y w, [x 7→ i, y 7→ j] |= x / y
def
⇐⇒ j = i+ 1

x /+ y w, [x 7→ i, y 7→ j] |= x /+ y
def
⇐⇒ i < j

Pσ(x) w, [x 7→ i] |= Pσ(x)
def
⇐⇒ i ∈ Pσ

ϕ ∧ ψ
...

¬ϕ
...

(∃x)[ϕ(x)] w, s |= (∃x)[ϕ(x)]
def
⇐⇒ w, s[x 7→ i] |= ϕ(x)]

for some i ∈ D
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Locally Testable with Order (LTOk)

LTk plus

ϕ • ψ w |= ϕ • ψ
def
⇐⇒ w = w1 · w2, w1 |= ϕ and w2 |= ψ.

B-before-C: (oB ∨ AB • oC ∨AC) ∨ ¬(oC ∨AC ∨ BC)

Definition 2 (Star-Free Set) The class of Star-Free Sets (SF)

is the smallest class of languages satisfying:

• ∅ ∈ SF, {ε} ∈ SF, and {σ} ∈ SF for each σ ∈ Σ.

• If L1, L2 ∈ SF then: L1 · L2 ∈ SF,

L1 ∪ L2 ∈ SF,

L1 ∈ SF.

Theorem 2 (McNauthton and Papert) A set of strings is

First-order definable over 〈D, /, /+, Pσ〉σ∈Σ iff it is Star-Free.
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Character of FO(<) Definable Sets

Theorem (McNaughton and Papert):

A stringset L is definable by a set of First-Order formulae over

strings iff it is recognized by a finite-state automaton that is

non-counting (that has an aperiodic syntactic monoid), that is, iff:

there exists some n > 0 such that

for all strings u, v, w over Σ

if uvnw occurs in L

then uvn+iw, for all i ≥ 1, occurs in L as well.

E.g.

those people who were left (by people who were left)n left ∈ L

those people who were left (by people who were left)n+1 left ∈ L
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A Characterization via ANNs

Binary valued Artificial Neural Nets

Buzzer-free: no inhibitory feedback.

Almost loop-free: no loops including more than one neuron or

delay greater than one.

1

Theorem (McNaughton and Papert):

A stringset L is definable by a set of First-Order formulae over

strings iff it is representable by a buzzer-free, almost loop-free ANN.
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Probing the LT0 Boundary

B-before-C = {w ∈ {A, B}∗ | w |= (∃x)[C(x) → (∃y)[B(y)∧y < x] ]}(∈ LTO)

Even-B
def
= {w ∈ {A, B}∗ | |w|

B
= 2i, 0 ≤ i} 6∈ LTT

AiBnBn ∈ Even-B but AiBn+1Bn 6∈ Even-B

In Out

LTO B-before-C AiBAjCAk AiCAjBAk

non-LTO Even-B B2i B2i+1
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MSO (Strings)

〈D, /, /+, Pσ〉σ∈Σ

First-order Quantification (positions)

Monadic Second-order Quantification (sets of positions)

/+ is MSO-definable from /.
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MSO Example

(∃X0)[ (∀x)[(∃y)[y / x] ∨X0(x)] ∧

(∀x, y)[x / y → (X0(x) ↔ ¬(X0(y))] ∧

(∀x)[(∃y)[x / y] ∨ ¬(X0(x))] ]

X0 X0 X0 X0 X0

c b a b c b

X0
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Theorem 3 (Chomsky Shützenberger) A set of strings is

Regular iff it is a homomorphic image of a Strictly 2-Local set.

Definition (Nerode Equivalence) Two strings w and v are

Nerode Equivalent with respect to a stringset L over Σ (denoted

w ≡L v) iff for all strings u over Σ, wu ∈ L⇔ vu ∈ L.

Theorem 4 (Myhill-Nerode) A stringset L is recognizable by a

FSA (over strings) iff ≡L partitions the set of all strings over Σ

into finitely many equivalence classes.

Theorem 5 (Büchi, Elgot) A set of strings is MSO-definable

over 〈D, /, /+, Pσ〉σ∈Σ iff it is regular.
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Probing the FS Boundary

Even-B
def
= {w ∈ {A,B}∗ | |w|B = 2i, 0 ≤ i} ∈ FS

{AnBn | n > 0} 6∈ FS

w ≡AnBn v ⇔ w, v 6∈ {AiBj | i, j ≥ 0} or

|w|A − |w|B = |v|A − |v|B .

In Out

FS Even-B B2i B2i+1

non-FS AnBn AnBn An−1Bn+1
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Testing AnBn

AAABBB|w|A = |w|B
AABBBA

AmBn

AABBBAiBj, 2|(i + j)

AABBBB
AnBn



RecHul’07 15

Slide 29

Context-Free

Additional structure — not finitely bounded

AnBn

D1 = |w|A = |w|B , properly nested

D2 = |w|A = |w|B and |w|C = |w|D, properly nested.

Subregular Hierarchy over Trees

CFG = SL2 < LT < FO(+1) < FO(<) < MSO = FSTA
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Conclusions

FLT support for aural pattern recognition experiments

Model-theoretic characterizations

– very general methods for describing patterns

– provide clues to nature of cognitive mechanisms

– independent of a priori assumptions

Grammar- and Automata-theoretic characterizations

– provide information about nature of stringsets

– minimal pairs

Sub-regular hierarchy

• broad range of capabilities weaker than human capabilities

• characterizations in terms of plausible cognitive attributes



RecHul’07 16

References

Beauquier, D., and Jean-Eric Pin. 1991. Languages and scanners. Theoretical Computer
Science 84:3–21.
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